skip to main content


This content will become publicly available on September 12, 2024

Title: Developing and using a scalable assessment to measure preservice elementary teachers' content knowledge for teaching about matter
Abstract

There is strong agreement in science teacher education of the importance of teachers' content knowledge for teaching (CKT), which includes their subject matter knowledge and their pedagogical content knowledge. However, there are limited instruments that can be easily administered and scored on a large scale to assess and study elementary science teachers' CKT. Such measures would support strategic monitoring of large groups of science teachers' CKT and the investigation of comparative questions about science teachers' CKT longitudinally across the professional continuum or across teacher education or professional development sites. To address this gap, this study focused on designing an automatically scorable summative assessment that can be used to measure preservice elementary teachers' (PSETs') CKT in one high‐leverage science content area: matter and its interactions. We conducted a field test of this CKT instrument with 822 PSETs from across the United States and used the response data to examine how this instrument functions as a potential tool for measuring PSETs' CKT in this science content area. Results suggest this instrument is reliable and can be used on large scale to support valid inferences about PSETs' CKT in this content area. In addition, the dimensionality analysis showed that all items measure a single construct of CKT about matter and its interactions, as participants did not show any differential performance by content topic or work of teaching science instructional tool categories. Implications for progressing the field's understanding of the nature of CKT and approaches to developing summative instruments to assess science teachers' CKT are discussed.

 
more » « less
NSF-PAR ID:
10462176
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Research in Science Teaching
ISSN:
0022-4308
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A major challenge for elementary STEM teacher educators is incorporating social justice considerations across the span of professional program coursework. Recognizing that standards and policy documents are pressing for diversity and inclusion in STEM education, there is a growing need to support preservice teachers’ learning about critical theories and how to develop an equitable vision of teaching. This paper describes ongoing research on our University’s elementary STEM teacher education program. We focus our discussion on instrument development and the methods we used for eliciting preservice teachers’ understandings of equity and diversity issues related to teaching STEM content. We designed a number of math, science, and technology scenarios in tandem, as means of building coherence across disciplinary boundaries; this report focuses on math teaching and learning. 
    more » « less
  2. Abstract

    Questioning is a critical instructional strategy for teachers to support students’ knowledge construction in inquiry-oriented science teaching. Existing literature has delineated the characteristics and functions of effective questioning strategies. However, attention has been primarily cast on the format of questioning like open-ended questions in prompting student interactions or class discourses, but not much on science content embedded in questions and how they guide students toward learning objectives. Insufficient attention has been cast on the connection between a chain of questions used by a teacher in the attempt to scaffold student conceptual understanding, especially when students encounter difficulties. Furthermore, existing methods of question analysis from massive information of class discourses are unwieldy for large-scale analysis. Science teacher education needs an instrument to assess a large sample of Pre-service Teachers’ (PST) competencies of not only asking open-ended questions to solicit students’ thoughts but also analyzing the information collected from students’ responses and determining the logical of consecutive responses. This study presented such an instrument for analyzing patterns of 60 PST’s questioning chains from when they taught a science lesson during a methods course and another lesson during student teaching. Cohen’s Kappa was conducted to examine the inter-rater reliability of the coders. The PST’s orientations from the two videos were determined and the correlation between them was compared to test the validity of this instrument. Consideration of the data from this instrument identified patterns of the PSTs’ science teaching, discussed the importance of guiding questions in inquiry teaching, and suggested quantitative studies with this instrument.

     
    more » « less
  3. null (Ed.)
    As our nation’s need for engineering professionals grows, a sharp rise in P-12 engineering education programs and related research has taken place (Brophy, Klein, Portsmore, & Rogers, 2008; Purzer, Strobel, & Cardella, 2014). The associated research has focused primarily on students’ perceptions and motivations, teachers’ beliefs and knowledge, and curricula and program success. The existing research has expanded our understanding of new K-12 engineering curriculum development and teacher professional development efforts, but empirical data remain scarce on how racial and ethnic diversity of student population influences teaching methods, course content, and overall teachers’ experiences. In particular, Hynes et al. (2017) note in their systematic review of P-12 research that little attention has been paid to teachers’ experiences with respect to racially and ethnically diverse engineering classrooms. The growing attention and resources being committed to diversity and inclusion issues (Lichtenstein, Chen, Smith, & Maldonado, 2014; McKenna, Dalal, Anderson, & Ta, 2018; NRC, 2009) underscore the importance of understanding teachers’ experiences with complementary research-based recommendations for how to implement engineering curricula in racially diverse schools to engage all students. Our work examines the experiences of three high school teachers as they teach an introductory engineering course in geographically and distinctly different racially diverse schools across the nation. The study is situated in the context of a new high school level engineering education initiative called Engineering for Us All (E4USA). The National Science Foundation (NSF) funded initiative was launched in 2018 as a partnership among five universities across the nation to ‘demystify’ engineering for high school students and teachers. The program aims to create an all-inclusive high school level engineering course(s), a professional development platform, and a learning community to support student pathways to higher education institutions. An introductory engineering course was developed and professional development was provided to nine high school teachers to instruct and assess engineering learning during the first year of the project. This study investigates participating teachers’ implementation of the course in high schools across the nation to understand the extent to which their experiences vary as a function of student demographic (race, ethnicity, socioeconomic status) and resource level of the school itself. Analysis of these experiences was undertaken using a collective case-study approach (Creswell, 2013) involving in-depth analysis of a limited number of cases “to focus on fewer "subjects," but more "variables" within each subject” (Campbell & Ahrens, 1998, p. 541). This study will document distinct experiences of high school teachers as they teach the E4USA curriculum. Participants were purposively sampled for the cases in order to gather an information-rich data set (Creswell, 2013). The study focuses on three of the nine teachers participating in the first cohort to implement the E4USA curriculum. Teachers were purposefully selected because of the demographic makeup of their students. The participating teachers teach in Arizona, Maryland and Tennessee with predominantly Hispanic, African-American, and Caucasian student bodies, respectively. To better understand similarities and differences among teaching experiences of these teachers, a rich data set is collected consisting of: 1) semi-structured interviews with teachers at multiple stages during the academic year, 2) reflective journal entries shared by the teachers, and 3) multiple observations of classrooms. The interview data will be analyzed with an inductive approach outlined by Miles, Huberman, and Saldaña (2014). All teachers’ interview transcripts will be coded together to identify common themes across participants. Participants’ reflections will be analyzed similarly, seeking to characterize their experiences. Observation notes will be used to triangulate the findings. Descriptions for each case will be written emphasizing the aspects that relate to the identified themes. Finally, we will look for commonalities and differences across cases. The results section will describe the cases at the individual participant level followed by a cross-case analysis. This study takes into consideration how high school teachers’ experiences could be an important tool to gain insight into engineering education problems at the P-12 level. Each case will provide insights into how student body diversity impacts teachers’ pedagogy and experiences. The cases illustrate “multiple truths” (Arghode, 2012) with regard to high school level engineering teaching and embody diversity from the perspective of high school teachers. We will highlight themes across cases in the context of frameworks that represent teacher experience conceptualizing race, ethnicity, and diversity of students. We will also present salient features from each case that connect to potential recommendations for advancing P-12 engineering education efforts. These findings will impact how diversity support is practiced at the high school level and will demonstrate specific novel curricular and pedagogical approaches in engineering education to advance P-12 mentoring efforts. 
    more » « less
  4. null (Ed.)
    Motivation: Recent efforts to expand K-12 computer science education highlight the great need for well-prepared computer science (CS) teachers. Teacher identity theory offers a particular conceptual lens for us to understand computer science teacher preparation and professional development. The emerging literature suggests that teacher identity is central to sustaining motivation, efficacy, job satisfaction, and commitment, and these attributes are crucial in determining teacher retention. While the benefits associated with a strong sense of teacher identity are great, teachers face unique challenges and tensions in developing their professional identity for teaching computer science. Objectives: This exploratory study attempts to operationalize computer science teacher identity through discussing the potential domains, proposing and testing a quantitative instrument for assessing computer science teachers’ professional identity. Method: We first discussed the potential domains of computer science teacher identity based on recent teacher identity literature and considerations on some unique challenges for computer science teachers. Then we proposed the computer science teacher identity scale, which was piloted through a national K-12 computer science teacher survey with 3,540 completed responses. The survey results were analyzed with a series of factor analyses to test the internal structure of the computer science teacher identity scale. Results: Our analyses reveal a four-factor solution for the computer science teacher identity scale, which is composed of CS teaching commitment, CS pedagogical confidence, confidence to engage students, and sense of community/belonging. There were significant differences among the teachers with different computer science teaching experiences. In general, teachers with more computer science teaching experience had higher computer science teacher identity scores on all four factors. Discussion: The four-factor model along with a large national dataset invites a deeper analysis of the data and can provide important benchmarks. Such an instrument can be used to explore developmental patterns in computer science teacher identity, and function as a pedagogical tool to provoke discussion and reflection among teachers about their professional development. This study may also contribute to understanding computer science teachers’ professional development needs and inform efforts to prepare, develop, and retain computer science teachers. 
    more » « less
  5. Abstract  
    more » « less