skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: Developing and using a scalable assessment to measure preservice elementary teachers' content knowledge for teaching about matter
Abstract

There is strong agreement in science teacher education of the importance of teachers' content knowledge for teaching (CKT), which includes their subject matter knowledge and their pedagogical content knowledge. However, there are limited instruments that can be easily administered and scored on a large scale to assess and study elementary science teachers' CKT. Such measures would support strategic monitoring of large groups of science teachers' CKT and the investigation of comparative questions about science teachers' CKT longitudinally across the professional continuum or across teacher education or professional development sites. To address this gap, this study focused on designing an automatically scorable summative assessment that can be used to measure preservice elementary teachers' (PSETs') CKT in one high‐leverage science content area: matter and its interactions. We conducted a field test of this CKT instrument with 822 PSETs from across the United States and used the response data to examine how this instrument functions as a potential tool for measuring PSETs' CKT in this science content area. Results suggest this instrument is reliable and can be used on large scale to support valid inferences about PSETs' CKT in this content area. In addition, the dimensionality analysis showed that all items measure a single construct of CKT about matter and its interactions, as participants did not show any differential performance by content topic or work of teaching science instructional tool categories. Implications for progressing the field's understanding of the nature of CKT and approaches to developing summative instruments to assess science teachers' CKT are discussed.

 
more » « less
Award ID(s):
1813254
PAR ID:
10462176
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Research in Science Teaching
Volume:
61
Issue:
6
ISSN:
0022-4308
Format(s):
Medium: X Size: p. 1389-1426
Size(s):
p. 1389-1426
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Despite the importance of developing elementary science teachers' content knowledge for teaching (CKT), there are limited assessments that have been designed to measure the full breadth of their CKT at scale. Our overall research project addressed this gap by developing an online assessment to measure elementary preservice teachers' CKT about matter and its interactions. This study, which was part of our larger project, reports on findings from one component of the item development process examining the construct validity of 118 different CKT about matter assessment items. In this study, 86 elementary teachers participated in cognitive interviews to examine: (a) the knowledge and reasoning they used when responding to these CKT about matter assessment items and (b) the nature of the content challenges and the content teaching challenges they encountered. Findings showed that over 80% of participant interview responses indicated that the CKT about matter items functioned as hypothesized, providing evidence to support future use of these items on a large‐scale assessment and in studies of science teachers' CKT. When responding to the items, participants showed evidence of four main challenges with the science content: (a) using scientific concepts to reason about science tasks, (b) using adequate evidence to reason about science phenomenon, (c) drawing upon examples of scientific phenomena, and (d) drawing upon science vocabulary. Findings also showed that participants experienced challenges regarding the following content teaching aspects when responding to these items: (a) connecting to key scientific concepts involved in the work of teaching science, (b) attending to instructional goal(s), and (c) recognizing features of grade‐level appropriateness. Implications for using CKT items as part of large‐scale science assessment systems and identifying areas to target in elementary science teachers' CKT development are addressed.

     
    more » « less
  2. Abstract

    Knowledge of science content and the ability to translate knowledge into effective teaching is known as teachers'content knowledge for teaching(CKT). Teachers with developed CKT are able to more effectively determine instructional and assessment activities that will deepen K‐12 students' scientific literacy. However, preservice teachers (PSTs) can have limited opportunities to develop CKT, and little is known about how to support PST CKT development in elementary science teacher preparation. In our work, we developed instructional materials (i.e., “CKT Packets”) intended to support teacher educators (TEs) in developing elementary PSTs' CKT for one content area—matter and its interactions. We facilitated a professional learning community for TEs to support their learning how to implement the materials in their courses. We report on results from a mixed‐methods study using a quasi‐experimental cohort control design with a pretest and posttest to understand differences in PSTs' CKT (N = 250) in eight TEs' science classrooms. Nesting PSTs within their TEs' courses, and controlling for PSTs' prior CKT, engagement time on the assessments, prior coursework, and TE time‐invariant effects, we found preliminary evidence that PSTs achieved greater CKT when TEs implemented more CKT Packets. Salient factors that we hypothesize influenced TEs' productive uses of CKT Packets included disruptions to courses/contexts, TEs' sources of motivation for implementing Packets, TEs' entry points for the alignment of curricular materials with existing topics and pedagogical course emphases, TEs' approaches for first‐time use of curricular materials, and TEs' experiences with the instructional routines of the Packets. We bound our interpretation of results within limitations (e.g., small sample size, quasi‐experimental design) and suggest avenues for new research. Throughout this article, we include implications for TEs, PSTs, educative curricula developers, and researchers working to improve science teaching and learning for students.

     
    more » « less
  3. This report describes efforts by a group of science teachers, teacher educators, researchers, and content specialists to conceptualize, develop, and pilot practice‐based assessment items designed to measure elementary science teachers' content knowledge for teaching (CKT). The report documents the framework used to specify the content‐specific teaching practices and instructional tools that are critical to the work that elementary science teachers engage in with students, curriculum, and instruction. Drawing on this framework, the report details the development process for practice‐based assessment items designed to measure CKT elementary science in three content areas: (a) structure and properties of matter, (b) ecosystems, and (c) Earth's place in the universe. These practice‐based assessment items address the various content challenges elementary science teachers face in their work and were designed to be used as a foundation for building large‐scale assessments of elementary science teachers' CKT science. This report presents initial validity evidence examining the practice‐based CKT science item characteristics using results from online administrations of these items to 250 upper elementary science teachers. Findings reveal that the majority of these new assessment items capture variability in elementary science teachers' performance and that a large proportion of the items differentiate moderately well, supporting a beginning proof‐of‐concept for the conceptualization and design of these practice‐based CKT elementary science assessment items.

     
    more » « less
  4. A major challenge for elementary STEM teacher educators is incorporating social justice considerations across the span of professional program coursework. Recognizing that standards and policy documents are pressing for diversity and inclusion in STEM education, there is a growing need to support preservice teachers’ learning about critical theories and how to develop an equitable vision of teaching. This paper describes ongoing research on our University’s elementary STEM teacher education program. We focus our discussion on instrument development and the methods we used for eliciting preservice teachers’ understandings of equity and diversity issues related to teaching STEM content. We designed a number of math, science, and technology scenarios in tandem, as means of building coherence across disciplinary boundaries; this report focuses on math teaching and learning. 
    more » « less
  5. Abstract

    Despite agreement among teacher educators, scholars, and policymakers on the importance of teachers’ subject matter knowledge (SMK), existing models provide limited information about the nature of this foundational component of teacher knowledge. The common assumption is that teachers need to know more about the science subject matter than their students are expected to learn, but what and how much more is underspecified. In order to more characterize science teachers’ SMK, we present the science knowledge for teaching (SKT) model, which has been adapted from the mathematics education literature to apply to science education. The SKT model includes three domains: core content knowledge, specialized content knowledge, and linked content knowledge. We used this model to explore the SMK new secondary chemistry teachers in South Africa and the United States drew on when they explained the conservation of mass and analyzed a related teaching scenario, two important tasks of teaching. Findings indicated these new teachers drew on knowledge from all three SKT domains in order to engage in these tasks of teaching. This result suggests the potential of the SKT model to characterize the nature of science teachers’ SMK and thereby better inform teacher preparation and professional development programs.

     
    more » « less