skip to main content

Title: What is More Important for Touch Dynamics based Mobile User Authentication?
Mobile user authentication (MUA) has become a gatekeeper for securing a wealth of personal and sensitive information residing on mobile devices. Keystrokes and touch gestures are two types of touch behaviors. It is not uncommon for a mobile user to make multiple MUA attempts. Nevertheless, there is a lack of an empirical comparison of different types of touch dynamics based MUA methods across different attempts. In view of the richness of touch dynamics, a large number of features have been extracted from it to build MUA models. However, there is little understanding of what features are important for the performance of such MUA models. Further, the training sample size of template generation is critical for real-world application of MUA models, but there is a lack of such information about touch gesture based methods. This study is aimed to address the above research limitations by conducting experiments using two MUA prototypes. Their empirical results can not only serve as a guide for the design of touch dynamics based MUA methods but also offer suggestions for improving the performance of MUA models.
Authors:
Award ID(s):
1917537
Publication Date:
NSF-PAR ID:
10167262
Journal Name:
PACIS 2020 Proceedings
Sponsoring Org:
National Science Foundation
More Like this
  1. Despite that tremendous progress has been made in mobile user authentication (MUA) in recent years, continuous mobile user authentication (CMUA), in which authentication is performed continuously after initial login, remains under studied. In addition, although one-handed interaction with a mobile device becomes increasingly common, one-handed CMUA has never been investigated in the literature. There is a lack of investigation of the CMUA performance between one-handed and two-handed interactions. To fill the literature gap, we developed a new CMUA method based on touch dynamics of thumb scrolling on the touchscreen of a mobile device. We developed a mobile app of themore »proposed CMUA method and evaluated its effectiveness with data collected from a user study. The findings have implications for the design of effective CMUA using touch dynamics and for improvement of accessibility and usability of MUA mechanisms.« less
  2. Hand-gesture and in-air-handwriting provide ways for users to input information in Augmented Reality (AR) and Virtual Reality (VR) applications where a physical keyboard or a touch screen is unavailable. However, understanding the movement of hands and fingers is challenging, which requires a large amount of data and data-driven models. In this paper, we propose an open research infrastructure named FMKit for in-air-handwriting analysis, which contains a set of Python libraries and a data repository collected from over 180 users with two different types of motion capture sensors. We also present three research tasks enabled by FMKit, including in-air-handwriting based usermore »authentication, user identification, and word recognition, and preliminary baseline performance.« less
  3. Hand-gesture and in-air-handwriting provide ways for users to input information in Augmented Reality (AR) and Virtual Reality (VR) applications where a physical keyboard or a touch screen is unavailable. However, understanding the movement of hands and fingers is challenging, which requires a large amount of data and data-driven models. In this paper, we propose an open research infrastructure named FMKit for in-air-handwriting analysis, which contains a set of Python libraries and a data repository collected from over 180 users with two different types of motion capture sensors. We also present three research tasks enabled by FMKit, including in-air-handwriting based usermore »authentication, user identification, and word recognition, and preliminary baseline performance.« less
  4. User and item reviews are valuable for the construction of recommender systems. In general, existing review-based methods for recommendation can be broadly categorized into two groups: the siamese models that build static user and item representations from their reviews respectively, and the interaction-based models that encode user and item dynamically according to the similarity or relationships of their reviews. Although the interaction-based models have more model capacity and fit human purchasing behavior better, several problematic model designs and assumptions of the existing interaction-based models lead to its suboptimal performance compared to existing siamese models. In this paper, we identify threemore »problems of the existing interaction-based recommendation models and propose a couple of solutions as well as a new interaction-based model to incorporate review data for rating prediction. Our model implements a relevance matching model with regularized training losses to discover user relevant information from long item reviews, and it also adapts a zero attention strategy to dynamically balance the item-dependent and item-independent information extracted from user reviews. Empirical experiments and case studies on Amazon Product Benchmark datasets show that our model can extract effective and interpretable user/item representations from their reviews and outperforms multiple types of state-of-the-art review-based recommendation models.« less
  5. Objective To define static, dynamic, and cognitive fit and their interactions as they pertain to exosystems and to document open research needs in using these fit characteristics to inform exosystem design. Background Initial exosystem sizing and fit evaluations are currently based on scalar anthropometric dimensions and subjective assessments. As fit depends on ongoing interactions related to task setting and user, attempts to tailor equipment have limitations when optimizing for this limited fit definition. Method A targeted literature review was conducted to inform a conceptual framework defining three characteristics of exosystem fit: static, dynamic, and cognitive. Details are provided on themore »importance of differentiating fit characteristics for developing exosystems. Results Static fit considers alignment between human and equipment and requires understanding anthropometric characteristics of target users and geometric equipment features. Dynamic fit assesses how the human and equipment move and interact with each other, with a focus on the relative alignment between the two systems. Cognitive fit considers the stages of human-information processing, including somatosensation, executive function, and motor selection. Human cognitive capabilities should remain available to process task- and stimulus-related information in the presence of an exosystem. Dynamic and cognitive fit are operationalized in a task-specific manner, while static fit can be considered for predefined postures. Conclusion A deeper understanding of how an exosystem fits an individual is needed to ensure good human–system performance. Development of methods for evaluating different fit characteristics is necessary. Application Methods are presented to inform exosystem evaluation across physical and cognitive characteristics.« less