Mobile user authentication (MUA) has become a gatekeeper for securing a wealth of personal and sensitive information residing on mobile devices. Keystrokes and touch gestures are two types of touch behaviors. It is not uncommon for a mobile user to make multiple MUA attempts. Nevertheless, there is a lack of an empirical comparison of different types of touch dynamics based MUA methods across different attempts. In view of the richness of touch dynamics, a large number of features have been extracted from it to build MUA models. However, there is little understanding of what features are important for the performance of such MUA models. Further, the training sample size of template generation is critical for real-world application of MUA models, but there is a lack of such information about touch gesture based methods. This study is aimed to address the above research limitations by conducting experiments using two MUA prototypes. Their empirical results can not only serve as a guide for the design of touch dynamics based MUA methods but also offer suggestions for improving the performance of MUA models.
more »
« less
Biometrics-Based Mobile User Authentication for the Elderly: Accessibility, Performance, and Method Design
Assistive technology is extremely important for maintaining and improving the elderly’s quality of life. Biometrics-based mobile user authentication (MUA) methods have witnessed rapid development in recent years owing to their usability and security benefits. However, there is a lack of a comprehensive review of such methods for the elderly. The primary objective of this research is to analyze the literature on state-of-the-art biometrics-based MUA methods via the lens of elderly users’ accessibility needs. In addition, conducting an MUA user study with elderly participants faces significant challenges, and it remains unclear how the performance of the elderly compares with non-elderly users in biometrics-based MUA. To this end, this research summarizes method design principles for user studies involving elderly participants and reveals the performance of elderly users relative to non-elderly users in biometrics-based MUA. The article also identifies open research issues and provides suggestions for the design of effective and accessible biometrics based MUA methods for the elderly.
more »
« less
- Award ID(s):
- 1917537
- PAR ID:
- 10418012
- Date Published:
- Journal Name:
- International Journal of Human–Computer Interaction
- ISSN:
- 1044-7318
- Page Range / eLocation ID:
- 1 to 15
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Despite that tremendous progress has been made in mobile user authentication (MUA) in recent years, continuous mobile user authentication (CMUA), in which authentication is performed continuously after initial login, remains under studied. In addition, although one-handed interaction with a mobile device becomes increasingly common, one-handed CMUA has never been investigated in the literature. There is a lack of investigation of the CMUA performance between one-handed and two-handed interactions. To fill the literature gap, we developed a new CMUA method based on touch dynamics of thumb scrolling on the touchscreen of a mobile device. We developed a mobile app of the proposed CMUA method and evaluated its effectiveness with data collected from a user study. The findings have implications for the design of effective CMUA using touch dynamics and for improvement of accessibility and usability of MUA mechanisms.more » « less
-
The ubiquity of mobile devices nowadays necessitates securing the apps and user information stored therein. However, existing one-time entry-point authentication mechanisms and enhanced security mechanisms such as Multi-Factor Authentication (MFA) are prone to a wide vector of attacks. Furthermore, MFA also introduces friction to the user experience. Therefore, what is needed is continuous authentication that once passing the entry-point authentication, will protect the mobile devices on a continuous basis by confirming the legitimate owner of the device and locking out detected impostor activities. Hence, more research is needed on the dynamic methods of mobile security such as behavioral biometrics-based continuous authentication, which is cost-effective and passive as the data utilized to authenticate users are logged from the phone's sensors. However, currently, there are not many mobile authentication datasets to perform benchmarking research. In this work, we share two novel mobile datasets (Clarkson University (CU) Mobile datasets I and II) consisting of multi-modality behavioral biometrics data from 49 and 39 users respectively (88 users in total). Each of our datasets consists of modalities such as swipes, keystrokes, acceleration, gyroscope, and pattern-tracing strokes. These modalities are collected when users are filling out a registration form in sitting both as genuine and impostor users. To exhibit the usefulness of the datasets, we have performed initial experiments on selected individual modalities from the datasets as well as the fusion of simultaneously available modalities.more » « less
-
null (Ed.)With the growing popularity of smartphones, continuous and implicit authentication of such devices via behavioral biometrics such as touch dynamics becomes an attractive option. Specially, when the physical biometrics are challenging to utilize, and their frequent and continuous usage annoys the user. This paper presents a touchstroke authentication model based on several classification algorithms and compare their performances in authenticating legitimate smartphone users. The evaluation results suggest that it is possible to achieve comparable authentication accuracies with an average accuracy of 91% considering the best performing model. This research is supervised by Dr. Debzani Deb (debd@wssu.edu), Department of Computer Science at Winston-Salem State University, NC.more » « less
-
Biometrics have been widely adopted for enhancing user authentication, benefiting usability by exploiting pervasive and collectible unique characteristics from physiological or behavioral traits of human. However, successful attacks on "static" biometrics such as fingerprints have been reported where an adversary acquires users' biometrics stealthily and compromises non-resilient biometrics. To mitigate the vulnerabilities of static biometrics, we leverage the unique and nonlinear hand-surface vibration response and design a system called Velody to defend against various attacks including replay and synthesis. The Velody system relies on two major properties in hand-surface vibration responses: uniqueness, contributed by physiological characteristics of human hands, and nonlinearity, whose complexity prevents attackers from predicting the response to an unseen challenge. Velody employs a challenge-response protocol. By changing the vibration challenge, the system elicits input-dependent nonlinear "symptoms" and unique spectrotemporal features in the vibration response, stopping both replay and synthesis attacks. Also, a large number of disposable challenge-response pairs can be collected during enrollment passively for daily authentication sessions. We build a prototype of Velody with an off-the-shelf vibration speaker and accelerometers to verify its usability and security through a comprehensive user experiment. Our results show that Velody demonstrates both strong security and long-term consistency with a low equal error rate (EER) of 5.8% against impersonation attack while correctly rejecting all other attacks including replay and synthesis attacks using a very short vibration challenge.more » « less
An official website of the United States government

