skip to main content


Title: Tracing One’s Touches: Continuous mobile user authentication based on touch dynamics
Despite that tremendous progress has been made in mobile user authentication (MUA) in recent years, continuous mobile user authentication (CMUA), in which authentication is performed continuously after initial login, remains under studied. In addition, although one-handed interaction with a mobile device becomes increasingly common, one-handed CMUA has never been investigated in the literature. There is a lack of investigation of the CMUA performance between one-handed and two-handed interactions. To fill the literature gap, we developed a new CMUA method based on touch dynamics of thumb scrolling on the touchscreen of a mobile device. We developed a mobile app of the proposed CMUA method and evaluated its effectiveness with data collected from a user study. The findings have implications for the design of effective CMUA using touch dynamics and for improvement of accessibility and usability of MUA mechanisms.  more » « less
Award ID(s):
1917537
NSF-PAR ID:
10095425
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Twenty-fifth Americas Conference on Information Systems
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Mobile user authentication (MUA) has become a gatekeeper for securing a wealth of personal and sensitive information residing on mobile devices. Keystrokes and touch gestures are two types of touch behaviors. It is not uncommon for a mobile user to make multiple MUA attempts. Nevertheless, there is a lack of an empirical comparison of different types of touch dynamics based MUA methods across different attempts. In view of the richness of touch dynamics, a large number of features have been extracted from it to build MUA models. However, there is little understanding of what features are important for the performance of such MUA models. Further, the training sample size of template generation is critical for real-world application of MUA models, but there is a lack of such information about touch gesture based methods. This study is aimed to address the above research limitations by conducting experiments using two MUA prototypes. Their empirical results can not only serve as a guide for the design of touch dynamics based MUA methods but also offer suggestions for improving the performance of MUA models. 
    more » « less
  2. Mobile devices typically rely on entry-point and other one-time authentication mechanisms such as a password, PIN, fingerprint, iris, or face. But these authentication types are prone to a wide attack vector and worse 1 INTRODUCTION Currently smartphones are predominantly protected a patterned password is prone to smudge attacks, and fingerprint scanning is prone to spoof attacks. Other forms of attacks include video capture and shoulder surfing. Given the increasingly important roles smartphones play in e-commerce and other operations where security is crucial, there lies a strong need of continuous authentication mechanisms to complement and enhance one-time authentication such that even if the authentication at the point of login gets compromised, the device is still unobtrusively protected by additional security measures in a continuous fashion. The research community has investigated several continuous authentication mechanisms based on unique human behavioral traits, including typing, swiping, and gait. To this end, we focus on investigating physiological traits. While interacting with hand-held devices, individuals strive to achieve stability and precision. This is because a certain degree of stability is required in order to manipulate and interact successfully with smartphones, while precision is needed for tasks such as touching or tapping a small target on the touch screen (Sitov´a et al., 2015). As a result, to achieve stability and precision, individuals tend to develop their own postural preferences, such as holding a phone with one or both hands, supporting hands on the sides of upper torso and interacting, keeping the phone on the table and typing with the preferred finger, setting the phone on knees while sitting crosslegged and typing, supporting both elbows on chair handles and typing. On the other hand, physiological traits, such as hand-size, grip strength, muscles, age, 424 Ray, A., Hou, D., Schuckers, S. and Barbir, A. Continuous Authentication based on Hand Micro-movement during Smartphone Form Filling by Seated Human Subjects. DOI: 10.5220/0010225804240431 In Proceedings of the 7th International Conference on Information Systems Security and Privacy (ICISSP 2021), pages 424-431 ISBN: 978-989-758-491-6 Copyrightc 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved still, once compromised, fail to protect the user’s account and data. In contrast, continuous authentication, based on traits of human behavior, can offer additional security measures in the device to authenticate against unauthorized users, even after the entry-point and one-time authentication has been compromised. To this end, we have collected a new data-set of multiple behavioral biometric modalities (49 users) when a user fills out an account recovery form in sitting using an Android app. These include motion events (acceleration and angular velocity), touch and swipe events, keystrokes, and pattern tracing. In this paper, we focus on authentication based on motion events by evaluating a set of score level fusion techniques to authenticate users based on the acceleration and angular velocity data. The best EERs of 2.4% and 6.9% for intra- and inter-session respectively, are achieved by fusing acceleration and angular velocity using Nandakumar et al.’s likelihood ratio (LR) based score fusion. 
    more » « less
  3. Assistive technology is extremely important for maintaining and improving the elderly’s quality of life. Biometrics-based mobile user authentication (MUA) methods have witnessed rapid development in recent years owing to their usability and security benefits. However, there is a lack of a comprehensive review of such methods for the elderly. The primary objective of this research is to analyze the literature on state-of-the-art biometrics-based MUA methods via the lens of elderly users’ accessibility needs. In addition, conducting an MUA user study with elderly participants faces significant challenges, and it remains unclear how the performance of the elderly compares with non-elderly users in biometrics-based MUA. To this end, this research summarizes method design principles for user studies involving elderly participants and reveals the performance of elderly users relative to non-elderly users in biometrics-based MUA. The article also identifies open research issues and provides suggestions for the design of effective and accessible biometrics based MUA methods for the elderly. 
    more » « less
  4. Wearable computing devices have become increasingly popular and while these devices promise to improve our lives, they come with new challenges. One such device is the Google Glass from which data can be stolen easily as the touch gestures can be intercepted from a head-mounted device. This paper focuses on analyzing and combining two behavioral metrics, namely, head movement (captured through glass) and torso movement (captured through smartphone) to build a continuous authentication system that can be used on Google Glass alone or by pairing it with a smartphone. We performed a correlation analysis among the features on these two metrics and found that very little correlation exists between the features extracted from head and torso movements in most scenarios (set of activities). This led us to combine the two metrics to perform authentication. We built an authentication system using these metrics and compared the performance among different scenarios. We got EER less than 6% when authenticating a user using only the head movements in one scenario whereas the EER is less than 5% when authenticating a user using both head and torso movements in general. 
    more » « less
  5. Mobile tracking has long been a privacy problem, where the geographic data and timestamps gathered by mobile network operators (MNOs) are used to track the locations and movements of mobile subscribers. Additionally, selling the geolocation information of subscribers has become a lucrative business. Many mobile carriers have violated user privacy agreements by selling users’ location history to third parties without user consent, exacerbating privacy issues related to mobile tracking and profiling. This paper presents AAKA, an anonymous authentication and key agreement scheme designed to protect against mobile tracking by honest-but-curious MNOs. AAKA leverages anonymous credentials and introduces a novel mobile authentication protocol that allows legitimate subscribers to access the network anonymously, without revealing their unique (real) IDs. It ensures the integrity of user credentials, preventing forgery, and ensures that connections made by the same user at different times cannot be linked. While the MNO alone cannot identify or profile a user, AAKA enables identification of a user under legal intervention, such as when the MNOs collaborate with an authorized law enforcement agency. Our design is compatible with the latest cellular architecture and SIM standardized by 3GPP, meeting 3GPP’s fundamental security requirements for User Equipment (UE) authentication and key agreement processes. A comprehensive security analysis demonstrates the scheme’s effectiveness. The evaluation shows that the scheme is practical, with a credential presentation generation taking∼ 52 ms on a constrained host device equipped with a standard cellular SIM. 
    more » « less