skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Measurable Selector in Kadison’s Carpenter’s Theorem
Abstract: We show the existence of a measurable selector in Carpenter’s Theorem due to Kadison. This solves a problem posed by Jasper and the first author in an earlier work. As an application we obtain a characterization of all possible spectral functions of shift-invariant subspaces of $$L^{2}(\mathbb{R}^{d})$$ and Carpenter’s Theorem for type $$\text{I}_{\infty }$$ von Neumann algebras.  more » « less
Award ID(s):
1665056
PAR ID:
10167277
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Canadian Journal of Mathematics
ISSN:
0008-414X
Page Range / eLocation ID:
1 to 24
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. An étale structure over a topological space X is a continuous family of structures (in some first-order language) indexed over X. We give an exposition of this fundamental concept from sheaf theory and its relevance to countable model theory and invariant descriptive set theory. We show that many classical aspects of spaces of countable models can be naturally framed and generalized in the context of étale structures, including the Lopez-Escobar theorem on invariant Borel sets, an omitting types theorem, and various characterizations of Scott rank. We also present and prove the countable version of the Joyal–Tierney representation theorem, which states that the isomorphism groupoid of an étale structure determines its theory up to bi-interpretability; and we explain how special cases of this theorem recover several recent results in the literature on groupoids of models and functors between them. 
    more » « less
  2. null (Ed.)
    Abstract This paper builds upon two key principles behind the Bourgain–Dyatlov quantitative uniqueness theorem for functions with Fourier transform supported in an Ahlfors regular set. We first provide a characterization of when a quantitative uniqueness theorem holds for functions with very quickly decaying Fourier transform, thereby providing an extension of the classical Paneah–Logvinenko–Sereda theorem. Secondly, we derive a transference result which converts a quantitative uniqueness theorem for functions with fast decaying Fourier transform to one for functions with Fourier transform supported on a fractal set. In addition to recovering the result of Bourgain–Dyatlov, we obtain analogous uniqueness results for denser fractals. 
    more » « less
  3. Mikołaj Bojańczyk and Emanuela Merelli and David P. Woodruff (Ed.)
    The classical coding theorem in Kolmogorov complexity states that if an n-bit string x is sampled with probability δ by an algorithm with prefix-free domain then K(x) ≤ log(1/δ) + O(1). In a recent work, Lu and Oliveira [31] established an unconditional time-bounded version of this result, by showing that if x can be efficiently sampled with probability δ then rKt(x) = O(log(1/δ)) + O(log n), where rKt denotes the randomized analogue of Levin’s Kt complexity. Unfortunately, this result is often insufficient when transferring applications of the classical coding theorem to the time-bounded setting, as it achieves a O(log(1/δ)) bound instead of the information-theoretic optimal log(1/δ). Motivated by this discrepancy, we investigate optimal coding theorems in the time-bounded setting. Our main contributions can be summarised as follows. • Efficient coding theorem for rKt with a factor of 2. Addressing a question from [31], we show that if x can be efficiently sampled with probability at least δ then rKt(x) ≤ (2 + o(1)) · log(1/δ) +O(log n). As in previous work, our coding theorem is efficient in the sense that it provides a polynomial-time probabilistic algorithm that, when given x, the code of the sampler, and δ, it outputs, with probability ≥ 0.99, a probabilistic representation of x that certifies this rKt complexity bound. • Optimality under a cryptographic assumption. Under a hypothesis about the security of cryptographic pseudorandom generators, we show that no efficient coding theorem can achieve a bound of the form rKt(x) ≤ (2 − o(1)) · log(1/δ) + poly(log n). Under a weaker assumption, we exhibit a gap between efficient coding theorems and existential coding theorems with near-optimal parameters. • Optimal coding theorem for pKt and unconditional Antunes-Fortnow. We consider pKt complexity [17], a variant of rKt where the randomness is public and the time bound is fixed. We observe the existence of an optimal coding theorem for pKt, and employ this result to establish an unconditional version of a theorem of Antunes and Fortnow [5] which characterizes the worst-case running times of languages that are in average polynomial-time over all P-samplable distributions. 
    more » « less
  4. In previous work, the authors established a generalized version of Schmidt’s subspace theorem for closed subschemes in general position in terms of Seshadri constants.We extend our theorem to weighted sums involving closed subschemes in subgeneral position, providing a joint generalization of Schmidt’s theorem with seminal inequalities of Nochka.A key aspect of the proof is the use of a lower bound for Seshadri constants of intersections from algebraic geometry, as well as a generalized Chebyshev inequality.As an application, we extend inequalities of Nochka and Ru–Wong from hyperplanes in 𝑚-subgeneral position to hypersurfaces in 𝑚-subgeneral position in projective space, proving a sharp result in dimensions 2 and 3, and coming within a factor of 3/2 of a sharp inequality in all dimensions.We state analogous results in Nevanlinna theory generalizing the second main theorem and Nochka’s theorem (Cartan’s conjecture). 
    more » « less
  5. Milliken’s tree theorem is a deep result in combinatorics that generalizes a vast number of other results in the subject, most notably Ramsey’s theorem and its many variants and consequences. In this sense, Milliken’s tree theorem is paradigmatic of structural Ramsey theory, which seeks to identify the common combinatorial and logical features of partition results in general. Its investigation in this area has consequently been extensive. Motivated by a question of Dobrinen, we initiate the study of Milliken’s tree theorem from the point of view of computability theory. The goal is to understand how close it is to being algorithmically solvable, and how computationally complex are the constructions needed to prove it. This kind of examination enjoys a long and rich history, and continues to be a highly active endeavor. Applied to combinatorial principles, particularly Ramsey’s theorem, it constitutes one of the most fruitful research programs in computability theory as a whole. The challenge to studying Milliken’s tree theorem using this framework is its unusually intricate proof, and more specifically, the proof of the Halpern-Laüchli theorem, which is a key ingredient. Our advance here stems from a careful analysis of the Halpern-Laüchli theorem which shows that it can be carried out effectively (i.e., that it is computably true). We use this as the basis of a new inductive proof of Milliken’s tree theorem that permits us to gauge its effectivity in turn. The key combinatorial tool we develop for the inductive step is a fast-growing computable function that can be used to obtain a finitary, or localized, version of Milliken’s tree theorem. This enables us to build solutions to the full Milliken’s tree theorem using effective forcing. The principal result of this is a full classification of the computable content of Milliken’s tree theorem in terms of the jump hierarchy, stratified by the size of instance. As usual, this also translates into the parlance of reverse mathematics, yielding a complete understanding of the fragment of second-order arithmetic required to prove Milliken’s tree theorem. We apply our analysis also to several well-known applications of Milliken’s tree theorem, namely Devlin’s theorem, a partition theorem for Rado graphs, and a generalized version of the so-called tree theorem of Chubb, Hirst, and McNicholl. These are all certain kinds of extensions of Ramsey’s theorem for different structures, namely the rational numbers, the Rado graph, and perfect binary trees, respectively. We obtain a number of new results about how these principles relate to Milliken’s tree theorem and to each other, in terms of both their computability-theoretic and combinatorial aspects. In particular, we establish new structural Ramsey-theoretic properties of the Rado graph theorem and the generalized Chubb-Hirst-McNicholl tree theorem using Zucker’s notion of big Ramsey structure. 
    more » « less