skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Optimal Coding Theorems in Time-Bounded Kolmogorov Complexity
The classical coding theorem in Kolmogorov complexity states that if an n-bit string x is sampled with probability δ by an algorithm with prefix-free domain then K(x) ≤ log(1/δ) + O(1). In a recent work, Lu and Oliveira [31] established an unconditional time-bounded version of this result, by showing that if x can be efficiently sampled with probability δ then rKt(x) = O(log(1/δ)) + O(log n), where rKt denotes the randomized analogue of Levin’s Kt complexity. Unfortunately, this result is often insufficient when transferring applications of the classical coding theorem to the time-bounded setting, as it achieves a O(log(1/δ)) bound instead of the information-theoretic optimal log(1/δ). Motivated by this discrepancy, we investigate optimal coding theorems in the time-bounded setting. Our main contributions can be summarised as follows. • Efficient coding theorem for rKt with a factor of 2. Addressing a question from [31], we show that if x can be efficiently sampled with probability at least δ then rKt(x) ≤ (2 + o(1)) · log(1/δ) +O(log n). As in previous work, our coding theorem is efficient in the sense that it provides a polynomial-time probabilistic algorithm that, when given x, the code of the sampler, and δ, it outputs, with probability ≥ 0.99, a probabilistic representation of x that certifies this rKt complexity bound. • Optimality under a cryptographic assumption. Under a hypothesis about the security of cryptographic pseudorandom generators, we show that no efficient coding theorem can achieve a bound of the form rKt(x) ≤ (2 − o(1)) · log(1/δ) + poly(log n). Under a weaker assumption, we exhibit a gap between efficient coding theorems and existential coding theorems with near-optimal parameters. • Optimal coding theorem for pKt and unconditional Antunes-Fortnow. We consider pKt complexity [17], a variant of rKt where the randomness is public and the time bound is fixed. We observe the existence of an optimal coding theorem for pKt, and employ this result to establish an unconditional version of a theorem of Antunes and Fortnow [5] which characterizes the worst-case running times of languages that are in average polynomial-time over all P-samplable distributions.  more » « less
Award ID(s):
1811729
PAR ID:
10366065
Author(s) / Creator(s):
; ;
Editor(s):
Mikołaj Bojańczyk and Emanuela Merelli and David P. Woodruff
Date Published:
Journal Name:
49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)
Page Range / eLocation ID:
92:1-92:14
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    This paper concerns designing distributed algorithms that are singularly optimal, i.e., algorithms that are simultaneously time and message optimal, for the fundamental leader election problem in networks. Our main result is a randomized distributed leader election algorithm for asynchronous complete networks that is essentially (up to a polylogarithmic factor) singularly optimal. Our algorithm uses O(n) messages with high probability and runs in O(log² n) time (with high probability) to elect a unique leader. The O(n) message complexity should be contrasted with the Ω(n log n) lower bounds for the deterministic message complexity of leader election algorithms (regardless of time), proven by Korach, Moran, and Zaks (TCS, 1989) for asynchronous algorithms and by Afek and Gafni (SIAM J. Comput., 1991) for synchronous networks. Hence, our result also separates the message complexities of randomized and deterministic leader election. More importantly, our (randomized) time complexity of O(log² n) for obtaining the optimal O(n) message complexity is significantly smaller than the long-standing Θ̃(n) time complexity obtained by Afek and Gafni and by Singh (SIAM J. Comput., 1997) for message optimal (deterministic) election in asynchronous networks. Afek and Gafni also conjectured that Θ̃(n) time would be optimal for message-optimal asynchronous algorithms. Our result shows that randomized algorithms are significantly faster. Turning to synchronous complete networks, Afek and Gafni showed an essentially singularly optimal deterministic algorithm with O(log n) time and O(n log n) messages. Ramanathan et al. (Distrib. Comput. 2007) used randomization to improve the message complexity, and showed a randomized algorithm with O(n) messages but still with O(log n) time (with failure probability O(1 / log^{Ω(1)}n)). Our second result shows that synchronous complete networks admit a tightly singularly optimal randomized algorithm, with O(1) time and O(n) messages (both bounds are optimal). Moreover, our algorithm’s time bound holds with certainty, and its message bound holds with high probability, i.e., 1-1/n^c for constant c. Our results demonstrate that leader election can be solved in a simultaneously message and time-efficient manner in asynchronous complete networks using randomization. It is open whether this is possible in asynchronous general networks. 
    more » « less
  2. Santhanam, Rahul (Ed.)
    {"Abstract":["A long-standing open problem dating back to the 1960s is whether there exists a search-to-decision reduction for the time-bounded Kolmogorov complexity problem - that is, the problem of determining whether the length of the shortest time-t program generating a given string x is at most s.\r\nIn this work, we consider the more "robust" version of the time-bounded Kolmogorov complexity problem, referred to as the GapMINKT problem, where given a size bound s and a running time bound t, the goal is to determine whether there exists a poly(t,|x|)-time program of length s+O(log |x|) that generates x. We present the first non-trivial search-to-decision reduction R for the GapMINKT problem; R has a running-time bound of 2^{ε n} for any ε > 0 and additionally only queries its oracle on "thresholds" s of size s+O(log |x|). As such, we get that any algorithm with running-time (resp. circuit size) 2^{α s} poly(|x|,t,s) for solving GapMINKT (given an instance (x,t,s), yields an algorithm for finding a witness with running-time (resp. circuit size) 2^{(α+ε) s} poly(|x|,t,s).\r\nOur second result is a polynomial-time search-to-decision reduction for the time-bounded Kolmogorov complexity problem in the average-case regime. Such a reduction was recently shown by Liu and Pass (FOCS'20), heavily relying on cryptographic techniques. Our reduction is more direct and additionally has the advantage of being length-preserving, and as such also applies in the exponential time/size regime.\r\nA central component in both of these results is the use of Kolmogorov and Levin’s Symmetry of Information Theorem."]} 
    more » « less
  3. Bringmann, Karl; Grohe, Martin; Puppis, Gabriele; Svensson, Ola (Ed.)
    We revisit the noisy binary search model of [Karp and Kleinberg, 2007], in which we have n coins with unknown probabilities p_i that we can flip. The coins are sorted by increasing p_i, and we would like to find where the probability crosses (to within ε) of a target value τ. This generalized the fixed-noise model of [Burnashev and Zigangirov, 1974], in which p_i = 1/2 ± ε, to a setting where coins near the target may be indistinguishable from it. It was shown in [Karp and Kleinberg, 2007] that Θ(1/ε² log n) samples are necessary and sufficient for this task. We produce a practical algorithm by solving two theoretical challenges: high-probability behavior and sharp constants. We give an algorithm that succeeds with probability 1-δ from 1/C_{τ, ε} ⋅ (log₂ n + O(log^{2/3} n log^{1/3} 1/(δ) + log 1/(δ))) samples, where C_{τ, ε} is the optimal such constant achievable. For δ > n^{-o(1)} this is within 1 + o(1) of optimal, and for δ ≪ 1 it is the first bound within constant factors of optimal. 
    more » « less
  4. We study the problem of robust multivariate polynomial regression: let p\colon\mathbb{R}^n\to\mathbb{R} be an unknown n-variate polynomial of degree at most d in each variable. We are given as input a set of random samples (\mathbf{x}_i,y_i) \in [-1,1]^n \times \mathbb{R} that are noisy versions of (\mathbf{x}_i,p(\mathbf{x}_i)). More precisely, each \mathbf{x}_i is sampled independently from some distribution \chi on [-1,1]^n, and for each i independently, y_i is arbitrary (i.e., an outlier) with probability at most \rho < 1/2, and otherwise satisfies |y_i-p(\mathbf{x}_i)|\leq\sigma. The goal is to output a polynomial \hat{p}, of degree at most d in each variable, within an \ell_\infty-distance of at most O(\sigma) from p. Kane, Karmalkar, and Price [FOCS'17] solved this problem for n=1. We generalize their results to the n-variate setting, showing an algorithm that achieves a sample complexity of O_n(d^n\log d), where the hidden constant depends on n, if \chi is the n-dimensional Chebyshev distribution. The sample complexity is O_n(d^{2n}\log d), if the samples are drawn from the uniform distribution instead. The approximation error is guaranteed to be at most O(\sigma), and the run-time depends on \log(1/\sigma). In the setting where each \mathbf{x}_i and y_i are known up to N bits of precision, the run-time's dependence on N is linear. We also show that our sample complexities are optimal in terms of d^n. Furthermore, we show that it is possible to have the run-time be independent of 1/\sigma, at the cost of a higher sample complexity. 
    more » « less
  5. We give the first communication-optimal document exchange protocol. For any n and k 
    more » « less