skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Detection of polarization neutral points in observationsof the combined corona and sky during the Aug 212017 total solar eclipse
We report the results of polarimetric observations of the total solar eclipse of 21 August 2017 from Rexburg, Idaho (USA).We use three synchronized DSLR cameras with polarization filters oriented at 0, 60, and 120 to provide high-dynamic-range RGB polarization images of the corona and surrounding sky.We measure tangential coronal polarization and vertical sky polarization, both as expected. These observations provide detailed detections of polarization neutral points above and below the eclipsed Sun where the coronal polarization is canceled by the sky polarization.We name these special polarization neutral points afterMinnaert and Van de Hulst.  more » « less
Award ID(s):
1936028
PAR ID:
10167365
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Applied Optics
Volume:
59
Issue:
21
ISSN:
1559-128X
Page Range / eLocation ID:
F71-F77
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. All-sky polarization images were measured from sunrise to sunset and during a cloud-free totality on 21 August 2017 in Rexburg, Idaho using two digital three-camera all-sky polarimeters and a time-sequential liquid-crystal-based all-sky polarimeter. Twenty-five polarimetric images were recorded during totality, revealing a highly dynamic evolution of the distribution of skylight polarization, with the degree of linear polarization becoming nearly zenith-symmetric by the end of totality. The surrounding environment was characterized with an infrared cloud imager that confirmed the complete absence of clouds during totality, an AERONET solar radiometer that measured aerosol properties, a portable weather station, and a hand-held spectrometer with satellite images that measured surface reflectance at and near the observation site. These observations confirm that previously observed totality patterns are general and not unique to those specific eclipses. The high temporal image resolution revealed a transition of a neutral point from the zenith in totality to the normal Babinet point just above the Sun after third contact, providing the first indication that the transition between totality and normal daytime polarization patterns occurs over of a time period of approximately 13 s. 
    more » « less
  2. The geospace response to coronal mass ejections includes phenomena across many regions, from reconnection at the dayside and magnetotail, through the inner magnetosphere, to the ionosphere, and even to the ground. Phenomena occurring in each region are often connected to each other through the magnetic field, but that field undergoes dynamic changes during storms and substorms. Improving our understanding of the geospace response to storms requires a global picture that enables us to observe all the regions simultaneously with both spatial and temporal resolution. Using the Energetic Neutral Atom (ENA) imager on the Two Wide-Angle Imaging Neutral-Atom Spectrometers (TWINS) mission, a temperature map can be calculated to provide a global view of the magnetotail. These maps are combined with in situ measurements at geosynchronous orbit from GOES 13 and 15, auroral images from all sky imagers (ASIs), and ground magnetometer measurements to examine the global geospace response of a coronal mass ejection (CME) driven event on March 12th, 2012. Mesoscale features in the magnetotail are observed throughout the interval, including prior to the storm commencement and during the main phase, which has implications for the dominant processes that lead to pressure buildup in the inner magnetosphere. Auroral enhancements that can be associated with these magnetotail features through magnetosphere-ionosphere coupling are observed to appear only after global reconfigurations of the magnetic field. 
    more » « less
  3. The sky polarization pattern during solar eclipse totality shifts from the usual daytime clear-sky pattern, with maximum polarization in an arc located 90° from the Sun, to one with maximum polarization slightly above the horizon in a ring nominally concentric about the zenith. A sequence of 9 visible-wavelength all-sky images are shown throughout totality for the 21 August 2017 solar eclipse from a site near Rexburg, ID USA (43.8294°N, 111.8849°W). A neutral region appeared in the southwest quadrant of the all-sky images, directly opposite the eclipsed Sun, and evolved in size and radial position throughout the 2 min 17 s of totality. 
    more » « less
  4. We present the first degree-scale tomography map of the dusty magnetized interstellar medium (ISM) from stellar polarimetry and distance measurements. We used the RoboPol polarimeter at Skinakas Observatory to conduct a survey of the polarization of starlight in a region of the sky of about four square degrees. We propose a Bayesian method to decompose the stellar-polarization source field along the distance to invert the three-dimensional (3D) volume occupied by the observed stars. We used this method to obtain the first 3D map of the dusty magnetized ISM. Specifically, we produced a tomography map of the orientation of the plane-of-sky component of the magnetic field threading the diffuse, dusty regions responsible for the stellar polarization. For the targeted region centered on Galactic coordinates (l,b) ≈ (103.3°, 22.3°), we identified several ISM clouds. Most of the lines of sight intersect more than one cloud. A very nearby component was detected in the foreground of a dominant component from which most of the polarization signal comes and which we identified as being an intersection of the wall of the Local Bubble and the Cepheus Flare. Farther clouds, with a distance of up to 2 kpc, were similarly detected. Some of them likely correspond to intermediate-velocity clouds seen in HIspectra in this region of the sky. We found that the orientation of the plane-of-sky component of the magnetic field changes along distance for most of the lines of sight. Our study demonstrates that starlight polarization data coupled to distance measures have the power to reveal the great complexity of the dusty magnetized ISM in 3D and, in particular, to provide local measurements of the plane-of-sky component of the magnetic field in dusty regions. This demonstrates that the inversion of large data volumes, as expected from the PASIPHAEsurvey, will provide the necessary means to move forward in the modeling of the Galactic magnetic field and of the dusty magnetized ISM as a contaminant in observations of the cosmic microwave background polarization. 
    more » « less
  5. Abstract The mean plane-of-sky magnetic field strength is traditionally obtained from the combination of polarization and spectroscopic data using the Davis–Chandrasekhar–Fermi (DCF) technique. However, we identify the major problem of the DCF technique to be its disregard of the anisotropic character of MHD turbulence. On the basis of the modern MHD turbulence theory we introduce a new way of obtaining magnetic field strength from observations. Unlike the DCF technique, the new technique uses not the dispersion of the polarization angle and line-of-sight velocities, but increments of these quantities given by the structure functions. To address the variety of astrophysical conditions for which our technique can be applied, we consider turbulence in both media with magnetic pressure higher than the gas pressure, corresponding, e.g., to molecular clouds, and media with gas pressure higher than the magnetic pressure, corresponding to the warm neutral medium. We provide general expressions for arbitrary admixtures of Alfvén, slow, and fast modes in these media and consider in detail particular cases relevant to diffuse media and molecular clouds. We successfully test our results using synthetic observations obtained from MHD turbulence simulations. We demonstrate that our differential measure approach, unlike the DCF technique, can be used to measure the distribution of magnetic field strengths, can provide magnetic field measurements with limited data, and is much more stable in the presence of induced large-scale variations of nonturbulent nature. Furthermore, our study uncovers the deficiencies of earlier DCF research. 
    more » « less