The globular cluster (GC) systems of low-mass late-type galaxies, such as NGC 2403, have been poorly studied to date. As a low mass galaxy (M* = 7 × 109 M⊙), cosmological simulations predict NGC 2403 to contain few, if any, accreted GCs. It is also isolated, with a remarkably undisturbed HI disc. Based on candidates from the literature, Sloan Digital Sky Survey and Hyper Suprime-Cam imaging, we selected several GCs for follow-up spectroscopy using the Keck Cosmic Web Imager. From their radial velocities and other properties, we identify eight bona-fide GCs associated with either the inner halo or the disc of this bulgeless galaxy. A stellar population analysis suggests a wide range of GC ages from shortly after the big bang until the present day. We find all of the old GCs to be metal-poor with [Fe/H] ≤ −1. The age–metallicity relation for the observed GCs suggests that they were formed over many Gyr from gas with a low effective yield, similar to that observed in the SMC. Outflows of enriched material may have contributed to the low yield. With a total system of ∼50 GCs expected, our study is the first step in fully mapping the star cluster history of NGC 2403more »
- Publication Date:
- NSF-PAR ID:
- 10167400
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 493
- Issue:
- 3
- Page Range or eLocation-ID:
- 3363 to 3378
- ISSN:
- 0035-8711
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT -
Abstract We report the kinematic, orbital, and chemical properties of 12 stellar streams with no evident progenitors using line-of-sight velocities and metallicities from the Southern Stellar Stream Spectroscopic Survey ( S 5 ), proper motions from Gaia EDR3, and distances derived from distance tracers or the literature. This data set provides the largest homogeneously analyzed set of streams with full 6D kinematics and metallicities. All streams have heliocentric distances between ∼10 and 50 kpc. The velocity and metallicity dispersions show that half of the stream progenitors were disrupted dwarf galaxies (DGs), while the other half originated from disrupted globular clusters (GCs), hereafter referred to as DG and GC streams. Based on the mean metallicities of the streams and the mass–metallicity relation, the luminosities of the progenitors of the DG streams range between those of Carina and Ursa Major I (−9.5 ≲ M V ≲ −5.5). Four of the six GC streams have mean metallicities of [Fe/H] < −2, more metal poor than typical Milky Way (MW) GCs at similar distances. Interestingly, the 300S and Jet GC streams are the only streams on retrograde orbits in our dozen-stream sample. Finally, we compare the orbital properties of the streams with known DGsmore »
-
ABSTRACT We study the globular clusters (GCs) in the spiral galaxy NGC 5907 well-known for its spectacular stellar stream – to better understand its origin. Using wide-field Subaru/Suprime-Cam gri images and deep Keck/DEIMOS multi-object spectroscopy, we identify and obtain the kinematics of several GCs superimposed on the stellar stream and the galaxy disc. We estimate the total number of GCs in NGC 5907 to be 154 ± 44, with a specific frequency of 0.73 ± 0.21. Our analysis also reveals a significant, new population of young star cluster candidates found mostly along the outskirts of the stellar disc. Using the properties of the stream GCs, we estimate that the disrupted galaxy has a stellar mass similar to the Sagittarius dwarf galaxy accreted by the Milky Way, i.e. $\sim 10^8~\rm M_\odot$.
-
ABSTRACT Recent evidence based on APOGEE data for stars within a few kpc of the Galactic Centre suggests that dissolved globular clusters (GCs) contribute significantly to the stellar mass budget of the inner halo. In this paper, we enquire into the origins of tracers of GC dissolution, N-rich stars, that are located in the inner 4 kpc of the Milky Way. From an analysis of the chemical compositions of these stars, we establish that about 30 per cent of the N-rich stars previously identified in the inner Galaxy may have an accreted origin. This result is confirmed by an analysis of the kinematic properties of our sample. The specific frequency of N-rich stars is quite large in the accreted population, exceeding that of its in situ counterparts by near an order of magnitude, in disagreement with predictions from numerical simulations. We hope that our numbers provide a useful test to models of GC formation and destruction.
-
Abstract Little is known about the origin of the fastest stars in the Galaxy. Our understanding of the chemical evolution history of the Milky Way and surrounding dwarf galaxies allows us to use the chemical composition of a star to investigate its origin and to say whether it was formed in situ or was accreted. However, the fastest stars, the hypervelocity stars, are young and massive and their chemical composition has not yet been analyzed. Though it is difficult to analyze the chemical composition of a massive young star, we are well versed in the analysis of late-type stars. We have used high-resolution ARCES/3.5 m Apache Point Observatory, MIKE/Magellan spectra to study the chemical details of 15 late-type hypervelocity star candidates. With Gaia EDR3 astrometry and spectroscopically determined radial velocities we found total velocities with a range of 274–520 km s −1 and mean value of 381 km s −1 . Therefore, our sample stars are not fast enough to be classified as hypervelocity stars, and are what is known as extreme-velocity stars. Our sample has a wide iron abundance range of −2.5 ≤ [Fe/H] ≤ −0.9. Their chemistry indicates that at least 50% of them are accreted extragalactic stars,more »