skip to main content


This content will become publicly available on August 1, 2024

Title: Multiple Stellar Populations in Metal-poor Globular Clusters with JWST: A NIRCam View of M92
Abstract Recent work on metal-intermediate globular clusters (GCs) with [Fe/H] = −1.5 and −0.75 has illustrated the theoretical behavior of multiple populations in photometric diagrams obtained with the JWST. These results are confirmed by observations of multiple populations among the M dwarfs of 47 Tucanae. Here we explore multiple populations in metal-poor GCs with [Fe/H] = −2.3. We take advantage of synthetic spectra and isochrones that account for the chemical composition of multiple populations to identify photometric diagrams that separate the distinct stellar populations of GCs. We derive high-precision photometry and proper motion for main-sequence (MS) stars in the metal-poor GC M92 from JWST and Hubble Space Telescope images. We identify a first-generation (1G) and two main groups of second-generation (2G A and 2G B ) stars and investigate their kinematics and chemical composition. We find isotropic motions with no differences among the distinct populations. The comparison between the observed colors of the M92 stars and the colors derived by synthetic spectra reveals that the helium abundances of 2G A and 2G B stars are higher than those of the 1G by Δ Y ∼ 0.01 and 0.04, respectively. The m F090W versus m F090W − m F277W color–magnitude diagram shows that below the knee MS stars exhibit a wide color broadening due to multiple populations. We constrain the amount of oxygen variation needed to reproduce the observed MS width, which is consistent with results on red giant branch stars. We conclude that multiple populations with masses of ∼0.1–0.8 M ⊙ share similar chemical compositions.  more » « less
Award ID(s):
2009193
NSF-PAR ID:
10437919
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
953
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
62
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Disentangling distinct stellar populations along the red-giant branches (RGBs) of globular clusters (GCs) is possible by using the pseudo-two-colour diagram dubbed chromosome map (ChM). One of the most intriguing findings is that the so-called first-generation (1G) stars, characterized by the same chemical composition of their natal cloud, exhibit extended sequences in the ChM. Unresolved binaries and internal variations in helium or metallicity have been suggested to explain this phenomenon. Here, we derive high-precision Hubble Space Telescope photometry of the GCs NGC 6362 and NGC 6838 and build their ChMs. We find that both 1G RGB and main-sequence (MS) stars exhibit wider ChM sequences than those of second-generation (2G). The evidence of this feature even among unevolved 1G MS stars indicates that chemical inhomogeneities are imprinted in the original gas. We introduce a pseudo-two-magnitude diagram to distinguish between helium and metallicity, and demonstrate that star-to-star metallicity variations are responsible for the extended 1G sequence. Conversely, binaries provide a minor contribution to the phenomenon. We estimate that the metallicity variations within 1G stars of 55 GCs range from less than [Fe/H]∼0.05 to ∼0.30 and mildly correlate with cluster mass. We exploit these findings to constrain the formation scenarios of multiple populations showing that they are qualitatively consistent with the occurrence of multiple generations. In contrast, the fact that 2G stars have more homogeneous iron content than the 1G challenges the scenarios based on accretion of material processed in massive 1G stars on to existing protostars. 
    more » « less
  2. null (Ed.)
    ABSTRACT The amount of mass lost by stars during the red-giant branch (RGB) phase is one of the main parameters to understand and correctly model the late stages of stellar evolution. Nevertheless, a fully comprehensive knowledge of the RGB mass-loss is still missing. Galactic Globular Clusters (GCs) are ideal targets to derive empirical formulations of mass-loss, but the presence of multiple populations with different chemical compositions has been a major challenge to constrain stellar masses and RGB mass-losses. Recent work has disentangled the distinct stellar populations along the RGB and the horizontal branch (HB) of 46 GCs, thus providing the possibility to estimate the RGB mass-loss of each stellar population. The mass-losses inferred for the stellar populations with pristine chemical composition (called first-generation or 1G stars) tightly correlate with cluster metallicity. This finding allows us to derive an empirical RGB mass-loss law for 1G stars. In this paper, we investigate seven GCs with no evidence of multiple populations and derive the RGB mass-loss by means of high-precision Hubble-Space Telescope photometry and accurate synthetic photometry. We find a cluster-to-cluster variation in the mass-loss ranging from ∼0.1 to ∼0.3 M⊙. The RGB mass-loss of simple-population GCs correlates with the metallicity of the host cluster. The discovery that simple-population GCs and 1G stars of multiple population GCs follow similar mass-loss versus metallicity relations suggests that the resulting mass-loss law is a standard outcome of stellar evolution. 
    more » « less
  3. Abstract Our understanding of the kinematic properties of multiple stellar populations (mPOPs) in Galactic globular clusters (GCs) is still limited compared to what we know about their chemical and photometric characteristics. Such limitation arises from the lack of a comprehensive observational investigation of this topic. Here we present the first homogeneous kinematic analysis of mPOPs in 56 GCs based on high-precision proper motions computed with Hubble Space Telescope data. We focused on red-giant-branch stars, for which the mPOP tagging is clearer, and measured the velocity dispersion of stars belonging to first (1G) and second generations (2G). We find that 1G stars are generally kinematically isotropic even at the half-light radius, whereas 2G stars are isotropic at the center and become radially anisotropic before the half-light radius. The radial anisotropy is induced by a lower tangential velocity dispersion of 2G stars with respect to the 1G population, while the radial component of the motion is comparable. We also show possible evidence that the kinematic properties of mPOPs are affected by the Galactic tidal field, corroborating previous observational and theoretical results suggesting a relation between the strength of the external tidal field and some properties of mPOPs. Although limited to the GCs’ central regions, our analysis leads to new insights into the mPOP phenomenon, and provides the motivation for future observational studies of the internal kinematics of mPOPs. 
    more » « less
  4. Abstract

    Brown dwarfs can serve as both clocks and chemical tracers of the evolutionary history of the Milky Way due to their continuous cooling and high sensitivity of spectra to composition. We focus on brown dwarfs in globular clusters that host some of the oldest coeval populations in the galaxy. Currently, no brown dwarfs in globular clusters have been confirmed, but they are expected to be uncovered with advanced observational facilities such as the James Webb Space Telescope (JWST). In this paper we present a new set of stellar models specifically designed to investigate low-mass stars and brown dwarfs inωCentauri—the largest known globular cluster. The parameters of our models were derived from iterative fits to Hubble Space Telescope photometry of the main-sequence members of the cluster. Despite the complex distribution of abundances and the presence of multiple main sequences inωCentauri, we find that the modal color–magnitude distribution can be represented by a single stellar population with parameters determined in this study. The observed luminosity function is well represented by two distinct stellar populations having solar and enhanced helium mass fractions and a common initial mass function, in agreement with previous studies. Our analysis confirms that the abundances of individual chemical elements play a key role in determining the physical properties of low-mass cluster members. We use our models to draw predictions of brown dwarf colors and magnitudes in anticipated JWST NIRCam data, confirming that the beginning of the substellar sequence should be detected inωCentauri in forthcoming observations.

     
    more » « less
  5. Abstract Recent work has shown that near-infrared (NIR) Hubble Space Telescope (HST) photometry allows us to disentangle multiple populations (MPs) among M dwarfs of globular clusters (GCs) and to investigate this phenomenon in very-low-mass (VLM) stars. Here, we present the color–magnitude diagrams of nine GCs and the open cluster NGC 6791 in the F110W and F160W bands of HST, showing that the main sequences (MSs) below the knee are either broadened or split, thus providing evidence of MPs among VLM stars. In contrast, the MS of NGC 6791 is consistent with a single population. The color distribution of M dwarfs dramatically changes between different GCs, and the color width correlates with the cluster mass. We conclude that the MP ubiquity, variety, and dependence on GC mass are properties common to VLM and more-massive stars. We combined UV, optical, and NIR observations of NGC 2808 and NGC 6121 (M4) to identify MPs along with a wide range of stellar masses (∼0.2–0.8  ⊙ ), from the MS turnoff to the VLM regime, and measured, for the first time, their mass functions (MFs). We find that the fraction of MPs does not depend on the stellar mass and that their MFs have similar slopes. These findings indicate that the properties of MPs do not depend on stellar mass. In a scenario where the second generations formed in higher-density environments than the first generations, the possibility that the MPs formed with the same initial MF would suggest that it does not depend on the environment. 
    more » « less