skip to main content

This content will become publicly available on July 6, 2023

Title: Modeling the kinematics of globular cluster systems
ABSTRACT Globular clusters (GCs) are old massive star clusters that serve as ‘fossils’ of galaxy formation. The advent of Gaia observatory has enabled detailed kinematics studies of the Galactic GCs and revolutionized our understanding of the connections between GC properties and galaxy assembly. However, lack of kinematic measurements of extragalactic GCs limits the sample size of GC systems that we can fully study. In this work, we present a model for GC formation and evolution, which includes positional and kinematic information of individual GCs by assigning them to particles in the Illustris TNG50-1 simulation based on age and location. We calibrate the three adjustable model parameters using observed properties of the Galactic and extragalactic GC systems, including the distributions of position, systemic velocity, velocity dispersion, anisotropy parameter, orbital actions, and metallicities. We also analyse the properties of GCs from different origins. In outer galaxy, ex situ clusters are more dominant than the clusters formed in situ. This leads to the GC metallicities decreasing outwards due to the increasing abundance of accreted, metal-poor clusters. We also find the ex-situ GCs to have greater velocity dispersions and orbital actions, in agreement with their accretion origin.
Award ID(s):
Publication Date:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range or eLocation-ID:
4736 to 4755
Sponsoring Org:
National Science Foundation
More Like this

    We study the present-day rotational velocity (Vrot) and velocity dispersion (σ) profiles of the globular cluster (GC) systems in a sample of 50 lenticular (S0) galaxies from the E-MOSAICS galaxy formation simulations. We find that $82{{\ \rm per\ cent}}$ of the galaxies have GCs that are rotating along the photometric major axis of the galaxy (aligned), while the remaining $18{{\ \rm per\ cent}}$ of the galaxies do not (misaligned). This is generally consistent with the observations from the SLUGGS survey. For the aligned galaxies, classified as peaked and outwardly decreasing ($49{{\ \rm per\ cent}}$), flat ($24{{\ \rm per\ cent}}$), and increasing ($27{{\ \rm per\ cent}}$) based on the Vrot/σ profiles out to large radii, we do not find any clear correlation between these present-day Vrot/σ profiles of the GCs and the past merger histories of the S0 galaxies, unlike in previous simulations of galaxy stars. For just over half of the misaligned galaxies, we find that the GC misalignment is the result of a major merger within the last $10\, \mathrm{Gyr}$ so that the ex-situ GCs are misaligned by an angle between 0° (co-rotation) and 180° (counter-rotation), with respect to the in situ GCs, depending on the orbital configurationmore »of the merging galaxies. For the remaining misaligned galaxies, we suggest that the in situ metal-poor GCs, formed at early times, have undergone more frequent kinematic perturbations than the in situ metal-rich GCs. We also find that the GCs accreted early and the in situ GCs are predominantly located within 0.2 virial radii (R200) from the centre of galaxies in 3D phase-space diagrams.

    « less
  2. Abstract We report the kinematic, orbital, and chemical properties of 12 stellar streams with no evident progenitors using line-of-sight velocities and metallicities from the Southern Stellar Stream Spectroscopic Survey ( S 5 ), proper motions from Gaia EDR3, and distances derived from distance tracers or the literature. This data set provides the largest homogeneously analyzed set of streams with full 6D kinematics and metallicities. All streams have heliocentric distances between ∼10 and 50 kpc. The velocity and metallicity dispersions show that half of the stream progenitors were disrupted dwarf galaxies (DGs), while the other half originated from disrupted globular clusters (GCs), hereafter referred to as DG and GC streams. Based on the mean metallicities of the streams and the mass–metallicity relation, the luminosities of the progenitors of the DG streams range between those of Carina and Ursa Major I (−9.5 ≲ M V ≲ −5.5). Four of the six GC streams have mean metallicities of [Fe/H] < −2, more metal poor than typical Milky Way (MW) GCs at similar distances. Interestingly, the 300S and Jet GC streams are the only streams on retrograde orbits in our dozen-stream sample. Finally, we compare the orbital properties of the streams with known DGsmore »and GCs in the MW, finding several possible associations. Some streams appear to have been accreted with the recently discovered Gaia–Enceladus–Sausage system, and others suggest that GCs were formed in and accreted together with the progenitors of DG streams whose stellar masses are similar to those of Draco to Carina (∼10 5 –10 6 M ⊙ ).« less
  3. ABSTRACT Studies of the kinematics and chemical compositions of Galactic globular clusters (GCs) enable the reconstruction of the history of star formation, chemical evolution, and mass assembly of the Galaxy. Using the latest data release (DR16) of the SDSS/APOGEE survey, we identify 3090 stars associated with 46 GCs. Using a previously defined kinematic association, we break the sample down into eight separate groups and examine how the kinematics-based classification maps into chemical composition space, considering only α (mostly Si and Mg) elements and Fe. Our results show that (i) the loci of both in situ and accreted subgroups in chemical space match those of their field counterparts; (ii) GCs from different individual accreted subgroups occupy the same locus in chemical space. This could either mean that they share a similar origin or that they are associated with distinct satellites which underwent similar chemical enrichment histories; (iii) the chemical compositions of the GCs associated with the low orbital energy subgroup defined by Massari and collaborators is broadly consistent with an in situ origin. However, at the low-metallicity end, the distinction between accreted and in situ populations is blurred; (iv) regarding the status of GCs whose origin is ambiguous, we conclude the following: the positionmore »in Si–Fe plane suggests an in situ origin for Liller 1 and a likely accreted origin for NGC 5904 and NGC 6388. The case of NGC 288 is unclear, as its orbital properties suggest an accretion origin, its chemical composition suggests it may have formed in situ.« less
  4. ABSTRACT Recent evidence based on APOGEE data for stars within a few kpc of the Galactic Centre suggests that dissolved globular clusters (GCs) contribute significantly to the stellar mass budget of the inner halo. In this paper, we enquire into the origins of tracers of GC dissolution, N-rich stars, that are located in the inner 4 kpc of the Milky Way. From an analysis of the chemical compositions of these stars, we establish that about 30 per cent of the N-rich stars previously identified in the inner Galaxy may have an accreted origin. This result is confirmed by an analysis of the kinematic properties of our sample. The specific frequency of N-rich stars is quite large in the accreted population, exceeding that of its in situ counterparts by near an order of magnitude, in disagreement with predictions from numerical simulations. We hope that our numbers provide a useful test to models of GC formation and destruction.
  5. ABSTRACT Globular clusters (GCs) are often used to estimate the dark matter content of galaxies, especially dwarf galaxies, where other kinematic tracers are lacking. These estimates typically assume spherical symmetry and dynamical equilibrium, assumptions that may not hold for the sparse GC population of dwarfs in galaxy clusters. We use a catalogue of GCs tagged on to the Illustris simulation to study the accuracy of GC-based mass estimates. We focus on galaxies in the stellar mass range 108–1011.8 M⊙ identified in nine simulated Virgo-like clusters. Our results indicate that mass estimates are, on average, accurate in systems with GC numbers NGC ≥ 10 and where the uncertainty of individual GC line-of-sight velocities is smaller than the inferred velocity dispersion, σGC. In cases where NGC ≤ 10, however, biases may result, depending on how σGC is computed. We provide calibrations that may help alleviate these biases in methods widely used in the literature. As an application, we find a number of dwarfs with $M_{*} \sim 10^{8.5}\, \mathrm{M}_{\odot }$ – comparable with the ultra-diffuse galaxy NGC 1052-DF2 (DF2), notable for the low σGC of its 10 GCs – that have $\sigma _{\rm GC} \sim 7\!-\!15\, {\rm km \,s}^{-1}$. These DF2 analogues correspond tomore »relatively massive systems at their infall time (M200 ∼ 1–3 × 1011 M⊙), which have retained only 3–17 GCs and have been stripped of more than 95 per cent of their dark matter. Our results suggest that extreme tidal mass loss in otherwise normal dwarf galaxies may be a possible formation channel for ultra-diffuse objects such as DF2.« less