The challenges encountered in computational analysis of wind turbines and turbomachinery include turbulent rotational flows, complex geometries, moving boundaries and interfaces, such as the rotor motion, and the fluid-structure interaction (FSI), such as the FSI between the wind turbine blade and the air. The Arbitrary Lagrangian-Eulerian (ALE) and Space-Time (ST) Variational Multiscale (VMS) methods and isogeometric discretization have been effective in addressing these challenges. The ALE-VMS and ST-VMS serve as core computational methods. They are supplemented with special methods like the Slip Interface (SI) method and ST Isogeometric Analysis with NURBS basis functions in time. We describe the core and special methods and present, as examples of challenging computations performed, computational analysis of horizontaland vertical-axis wind turbines and flow-driven This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium provided the original work is properly cited.string dynamics in pumps.
more »
« less
Computational Cardiovascular Flow Analysis with the Variational Multiscale Methods
Computational cardiovascular flow analysis can provide valuable information to medical doctors in a wide range of patientspecific cases, including cerebral aneurysms, aortas and heart valves. The computational challenges faced in this class of flow analyses also have a wide range. They include unsteady flows, complex cardiovascular geometries, moving boundaries and interfaces, such as the motion of the heart valve leaflets, contact between moving solid surfaces, such as the contact between the leaflets, and the fluid–structure interaction between the blood and the cardiovascular structure. Many of these challenges have been or are being addressed by the Space–Time Variational Multiscale (ST-VMS) method, Arbitrary Lagrangian–Eulerian VMS (ALE-VMS) method, and the VMS-based Immersogeometric Analysis (IMGA-VMS), which serve as the core computational methods, and the special methods used in combination with them. We provide an overview of the core and special methods and present examples of challenging computations carried out with these methods, including aorta and heart valve flow analyses. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium provided the original work is properly cited.
more »
« less
- Award ID(s):
- 1854436
- PAR ID:
- 10167554
- Date Published:
- Journal Name:
- Journal of Advanced Engineering and Computation
- Volume:
- 3
- Issue:
- 2
- ISSN:
- 1859-2244
- Page Range / eLocation ID:
- 366; 405
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The superior accuracy isogeometric analysis (IGA) brought to computations in fluid and solid mechanics has been yielding higher fidelity in computational aerodynamics. The increased accuracy we achieve with the IGA is in the flow solution, in representing the problem geometry, and, when we use the IGA basis functions also in time in a space–time (ST) framework, in representing the motion of solid surfaces. It is of course as part of a set of methods that the IGA has been very effective in computational aerodynamics, including complex-geometry aerodynamics. The set of methods we have been using can be categorized into those that serve as a core method, those that increase the accuracy, and those that widen the application range. The core methods are the residual-based variational multiscale (VMS), ST-VMS and arbitrary Lagrangian–Eulerian VMS methods. The IGA and ST-IGA are examples of the methods that increase the accuracy. The complex-geometry IGA mesh generation method is an example of the methods that widen the application range. The ST Topology Change method is another example of that. We provide an overview of these methods for IGA-based computational aerodynamics and present examples of the computations performed. In computational flow analysis with moving solid surfaces and contact between the solid surfaces, it is a challenge to represent the boundary layers with an accuracy attributed to moving-mesh methods and represent the contact without leaving a mesh protection gap.more » « less
-
Abstract Cardiac fluid dynamics fundamentally involves interactions between complex blood flows and the structural deformations of the muscular heart walls and the thin valve leaflets. There has been longstanding scientific, engineering, and medical interest in creating mathematical models of the heart that capture, explain, and predict these fluid–structure interactions (FSIs). However, existing computational models that account for interactions among the blood, the actively contracting myocardium, and the valves are limited in their abilities to predict valve performance, capture fine-scale flow features, or use realistic descriptions of tissue biomechanics. Here we introduce and benchmark a comprehensive mathematical model of cardiac FSI in the human heart. A unique feature of our model is that it incorporates biomechanically detailed descriptions of all major cardiac structures that are calibrated using tensile tests of human tissue specimens to reflect the heart’s microstructure. Further, it is the first FSI model of the heart that provides anatomically and physiologically detailed representations of all four cardiac valves. We demonstrate that this integrative model generates physiologic dynamics, including realistic pressure–volume loops that automatically capture isovolumetric contraction and relaxation, and that its responses to changes in loading conditions are consistent with the Frank–Starling mechanism. These complex relationships emerge intrinsically from interactions within our comprehensive description of cardiac physiology. Such models can serve as tools for predicting the impacts of medical interventions. They also can provide platforms for mechanistic studies of cardiac pathophysiology and dysfunction, including congenital defects, cardiomyopathies, and heart failure, that are difficult or impossible to perform in patients.more » « less
-
Abstract Subclinical leaflet thrombosis (SLT) is a potentially serious complication of aortic valve replacement with a bioprosthetic valve in which blood clots form on the replacement valve. SLT is associated with increased risk of transient ischemic attacks and strokes and can progress to clinical leaflet thrombosis. SLT following aortic valve replacement also may be related to subsequent structural valve deterioration, which can impair the durability of the valve replacement. Because of the difficulty in clinical imaging of SLT, models are needed to determine the mechanisms of SLT and could eventually predict which patients will develop SLT. To this end, we develop methods to simulate leaflet thrombosis that combine fluid–structure interaction and a simplified thrombosis model that allows for deposition along the moving leaflets. Additionally, this model can be adapted to model deposition or absorption along other moving boundaries. We present convergence results and quantify the model's ability to realize changes in valve opening and pressures. These new approaches are an important advancement in our tools for modeling thrombosis because they incorporate both adhesion to the surface of the moving leaflets and feedback to the fluid–structure interaction.more » « less
-
Left ventricular assist devices (LVADs) have been used for end-stage heart failure patients as a therapeutic option. The aortic valve plays a critical role in heart failure and its treatment with a LVAD. The cardiovascular-LVAD model is often used to investigate the physiological demands required by patients and predict the hemodynamic of the native heart supported with a LVAD. As it is a “ bridge-to-recovery ” treatment, it is important to maintain appropriate and active dynamics of the aortic valve and the cardiac output of the native heart, which requires that the LVAD pump be adjusted so that a proper balance between the blood contributed through the aortic valve and the pump is maintained. In this paper, we investigate how the pump power of the LVAD pump can affect the dynamic behaviors of the aortic valve for different levels of activity and different severities of heart failure. Our objective is to identify a critical value of the pump power (i.e., breakpoint ) to ensure that the LVAD pump does not take over the pumping function in the cardiovascular-pump system and share the ejected blood with the left ventricle to help the heart to recover. In addition, the hemodynamic often involves variability due to patients’ heterogeneity and the stochastic nature of the cardiovascular system. The variability poses significant challenges to understanding dynamic behaviors of the aortic valve and cardiac output. A generalized polynomial chaos (gPC) expansion is used in this work to develop a stochastic cardiovascular-pump model for efficient uncertainty propagation, from which it is possible to rapidly calculate the variance in the aortic valve opening duration and the cardiac output in the presence of variability. The simulation results show that the gPC-based cardiovascular-pump model is a reliable platform that can provide useful information to understand the effect of the LVAD pump on the hemodynamic of the heart.more » « less