skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 11 until 2:00 AM ET on Saturday, July 12 due to maintenance. We apologize for the inconvenience.


Title: Simulating cardiac fluid dynamics in the human heart
Abstract Cardiac fluid dynamics fundamentally involves interactions between complex blood flows and the structural deformations of the muscular heart walls and the thin valve leaflets. There has been longstanding scientific, engineering, and medical interest in creating mathematical models of the heart that capture, explain, and predict these fluid–structure interactions (FSIs). However, existing computational models that account for interactions among the blood, the actively contracting myocardium, and the valves are limited in their abilities to predict valve performance, capture fine-scale flow features, or use realistic descriptions of tissue biomechanics. Here we introduce and benchmark a comprehensive mathematical model of cardiac FSI in the human heart. A unique feature of our model is that it incorporates biomechanically detailed descriptions of all major cardiac structures that are calibrated using tensile tests of human tissue specimens to reflect the heart’s microstructure. Further, it is the first FSI model of the heart that provides anatomically and physiologically detailed representations of all four cardiac valves. We demonstrate that this integrative model generates physiologic dynamics, including realistic pressure–volume loops that automatically capture isovolumetric contraction and relaxation, and that its responses to changes in loading conditions are consistent with the Frank–Starling mechanism. These complex relationships emerge intrinsically from interactions within our comprehensive description of cardiac physiology. Such models can serve as tools for predicting the impacts of medical interventions. They also can provide platforms for mechanistic studies of cardiac pathophysiology and dysfunction, including congenital defects, cardiomyopathies, and heart failure, that are difficult or impossible to perform in patients.  more » « less
Award ID(s):
1016554 1047734 1450327 1460368 1652541 1931516 1460334
PAR ID:
10549918
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
PNAS Nexus
Volume:
3
Issue:
10
ISSN:
2752-6542
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Given the complexity of human left heart anatomy and valvular structures, the fluid–structure interaction (FSI) simulation of native and prosthetic valves poses a significant challenge for numerical methods. In this review, recent numerical advancements for both fluid and structural solvers for heart valves in patient-specific left hearts are systematically considered, emphasizing the numerical treatments of blood flow and valve surfaces, which are the most critical aspects for accurate simulations. Numerical methods for hemodynamics are considered under both the continuum and discrete (particle) approaches. The numerical treatments for the structural dynamics of aortic/mitral valves and FSI coupling methods between the solid Ωs and fluid domain Ωf are also reviewed. Future work toward more advanced patient-specific simulations is also discussed, including the fusion of high-fidelity simulation within vivo measurements and physics-based digital twining based on data analytics and machine learning techniques. 
    more » « less
  2. Pediatric heart valve disease affects children worldwide and necessitates valve replacements that remodel and grow with the patient. Current valve manufacturing technologies struggle to create valves that facilitate native tissue remodeling for permanent replacements. Here, we present focused rotary jet spinning (FRJS) for implantable medical devices, such as heart valves, to address this challenge. Combining RJS and a focused air stream, FRJS prints FibraValves, micro- and nanofibrous heart valves, in minutes. The micro- and nanoscale features provide structural cues to orient cells at the biotic-abiotic interface, while the centimeter-scale valve shape regulates cardiac flow. We built valves using poly(L-lactide-co-Ɛ-caprolactone) fiber scaffolds, which supported rapid cellular infiltration and displayed native valve-like mechanical properties. Evaluating clinical translatability, we assessed acute performance in a large animal model using a transcatheter delivery approach. These tests indicate that FRJS is a viable method for manufacturing heart valves and future medical implants. 
    more » « less
  3. Ghorbel, Mohamed; May-Newman, Karen (Ed.)
    Heart disease is a leading cause of mortality, with calcific aortic valve disease (CAVD) being the most prevalent subset. Being able to predict this disease in its early stages is important for monitoring patients before they need aortic valve replacement surgery. Thus, this study explored hydrodynamic, mechanical, and hemodynamic differences in healthy and very mildly calcified porcine small intestinal submucosa (PSIS) bioscaffold valves to determine any notable parameters between groups that could, possibly, be used for disease tracking purposes. Three valve groups were tested: raw PSIS as a control and two calcified groups that were seeded with human valvular interstitial and endothelial cells (VICs/VECs) and cultivated in calcifying media. These two calcified groups were cultured in either static or bioreactor-induced oscillatory flow conditions. Hydrodynamic assessments showed metrics were below thresholds associated for even mild calcification. Young’s modulus, however, was significantly higher in calcified valves when compared to raw PSIS, indicating the morphological changes to the tissue structure. Fluid–structure interaction (FSI) simulations agreed well with hydrodynamic results and, most notably, showed a significant increase in time-averaged wall shear stress (TAWSS) between raw and calcified groups. We conclude that tracking hemodynamics may be a viable biomarker for early-stage CAVD tracking. 
    more » « less
  4. Abstract Transcatheter aortic valve replacement (TAVR) first received FDA approval for high-risk surgical patients in 2011 and has been approved for low-risk surgical patients since 2019. It is now the most common type of aortic valve replacement, and its use continues to accelerate. Computer modeling and simulation (CM&S) is a tool to aid in TAVR device design, regulatory approval, and indication in patient-specific care. This study introduces a computational fluid-structure interaction (FSI) model of TAVR with Medtronic’s CoreValve Evolut R device using the immersed finite element-difference (IFED) method. We perform dynamic simulations of crimping and deployment of the Evolut R, as well as device behavior across the cardiac cycle in a patient-specific aortic root anatomy reconstructed from computed tomography (CT) image data. These IFED simulations, which incorporate biomechanics models fit to experimental tensile test data, automatically capture the contact within the device and between the self-expanding stent and native anatomy. Further, we apply realistic driving and loading conditions based on clinical measurements of human ventricular and aortic pressures and flow rates to demonstrate that our Evolut R model supports a physiological diastolic pressure load and provides informative clinical performance predictions. 
    more » « less
  5. BACKGROUND: Almost 95% of the venous valves are micron scale found in veins smaller than 300μm diameter. The fluid dynamics of blood flow and transport through these micro venous valves and their contribution to thrombosis is not yet well understood or characterized due to difficulty in making direct measurements in murine models. OBJECTIVE: The unique flow patterns that may arise in physiological and pathological non-actuating micro venous valves are predicted. METHODS: Computational fluid and transport simulations are used to model blood flow and oxygen gradients in a microfluidic vein. RESULTS: The model successfully recreates the typical non-Newtonian vortical flow within the valve cusps seen in preclinical experimental models and in clinic. The analysis further reveals variation in the vortex strengths due to temporal changes in blood flow. The cusp oxygen is typically low from the main lumen, and it is regulated by systemic venous flow. CONCLUSIONS: The analysis leads to a clinically-relevant hypothesis that micro venous valves may not create a hypoxic environment needed for endothelial inflammation, which is one of the main causes of thrombosis. However, incompetent micro venous valves are still locations for complex fluid dynamics of blood leading to low shear regions that may contribute to thrombosis through other pathways. 
    more » « less