skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Connecting Higher-Order Separation Logic to a First-Order Outside World
Separation logic is a useful tool for proving the correctness of programs that manipulate memory, especially when the model of memory includes higher-order state: Step-indexing, predicates in the heap, and higher-order ghost state have been used to reason about function pointers, data structure invariants, and complex concurrency patterns. On the other hand, the behavior of system features (e.g., operating systems) and the external world (e.g., communication between components) is usually specified using first-order formalisms. In principle, the soundness theorem of a separation logic is its interface with first-order theorems, but the soundness theorem may implicitly make assumptions about how other components are specified, limiting its use. In this paper, we show how to extend the higher-order separation logic of the Verified Software Toolchain to interface with a first-order verified operating system, in this case CertiKOS, that mediates its interaction with the outside world. The resulting system allows us to prove the correctness of C programs in separation logic based on the semantics of system calls implemented in CertiKOS. It also demonstrates that the combination of interaction trees + CompCert memories serves well as a lingua franca to interface and compose two quite different styles of program verification.  more » « less
Award ID(s):
1811894
PAR ID:
10167659
Author(s) / Creator(s):
Date Published:
Journal Name:
Programming Languages and Systems. ESOP 2020
Volume:
12075
Page Range / eLocation ID:
428-455
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Properties such as provable security and correctness for randomized programs are naturally expressed relationally as approximate equivalences. As a result, a number of relational program logics have been developed to reason about such approximate equivalences of probabilistic programs. However, existing approximate relational logics are mostly restricted to first-order programs without general state. In this paper we develop Approxis, a higher-order approximate relational separation logic for reasoning about approximate equivalence of programs written in an expressive ML-like language with discrete probabilistic sampling, higher-order functions, and higher-order state. The Approxis logic recasts the concept of error credits in the relational setting to reason about relational approximation, which allows for expressive notions of modularity and composition, a range of new approximate relational rules, and an internalization of a standard limiting argument for showing exact probabilistic equivalences by approximation. We also use Approxis to develop a logical relation model that quantifies over error credits, which can be used to prove exact contextual equivalence. We demonstrate the flexibility of our approach on a range of examples, including the PRP/PRF switching lemma, IND$-CPA security of an encryption scheme, and a collection of rejection samplers. All of the results have been mechanized in the Coq proof assistant and the Iris separation logic framework. 
    more » « less
  2. Verified compilation of open modules (i.e., modules whose functionality depends on other modules) provides a foundation for end-to-end verification of modular programs ubiquitous in contemporary software. However, despite intensive investigation in this topic for decades, the proposed approaches are still difficult to use in practice as they rely on assumptions about the internal working of compilers which make it difficult for external users to apply the verification results. We propose an approach to verified compositional compilation without such assumptions in the setting of verifying compilation of heterogeneous modules written in first-order languages supporting global memory and pointers. Our approach is based on the memory model of CompCert and a new discovery that a Kripke relation with a notion of memory protection can serve as a uniform and composable semantic interface for the compiler passes. By absorbing the rely-guarantee conditions on memory evolution for all compiler passes into this Kripke Memory Relation and by piggybacking requirements on compiler optimizations onto it, we get compositional correctness theorems for realistic optimizing compilers as refinements that directly relate native semantics of open modules and that are ignorant of intermediate compilation processes. Such direct refinements support all the compositionality and adequacy properties essential for verified compilation of open modules. We have applied this approach to the full compilation chain of CompCert with its Clight source language and demonstrated that our compiler correctness theorem is open to composition and intuitive to use with reduced verification complexity through end-to-end verification of non-trivial heterogeneous modules that may freely invoke each other (e.g., mutually recursively). 
    more » « less
  3. Probabilistic programs often trade accuracy for efficiency, and thus may, with a small probability, return an incorrect result. It is important to obtain precise bounds for the probability of these errors, but existing verification approaches have limitations that lead to error probability bounds that are excessively coarse, or only apply to first-order programs. In this paper we present Eris, a higher-order separation logic for proving error probability bounds for probabilistic programs written in an expressive higher-order language. Our key novelty is the introduction of error credits, a separation logic resource that tracks an upper bound on the probability that a program returns an erroneous result. By representing error bounds as a resource, we recover the benefits of separation logic, including compositionality, modularity, and dependency between errors and program terms, allowing for more precise specifications. Moreover, we enable novel reasoning principles such as expectation-preserving error composition, amortized error reasoning, and error induction. We illustrate the advantages of our approach by proving amortized error bounds on a range of examples, including collision probabilities in hash functions, which allow us to write more modular specifications for data structures that use them as clients. We also use our logic to prove correctness and almost-sure termination of rejection sampling algorithms. All of our results have been mechanized in the Coq proof assistant using the Iris separation logic framework and the Coquelicot real analysis library. 
    more » « less
  4. Representation predicates enable data abstraction in separation logic, but when the same concrete implementation may need to be abstracted in different ways, one needs a notion of subsumption. We demonstrate function-specification subtyping, analogous to subtyping, with a subsumption rule: if ϕ is a of ψ, that is ϕ< : ψ, then x: ϕ implies x: ψ, meaning that any function satisfying specification ϕ can be used wherever a function satisfying ψ is demanded. We extend previous notions of Hoare-logic sub-specification, which already included parameter adaption, to include framing (necessary for separation logic) and impredicative bifunctors (necessary for higher-order functions, i.e. function pointers). We show intersection specifications, with the expected relation to subtyping. We show how this enables compositional modular verification of the functional correctness of C programs, in Coq, with foundational machine-checked proofs of soundness. 
    more » « less
  5. We present verification of a bare-metal server built using diverse implementation techniques and languages against a whole-system input-output specification in terms of machine code, network packets, and mathematical specifications of elliptic-curve cryptography. We used very different formal-reasoning techniques throughout the stack, ranging from computer algebra, symbolic execution, and verification-condition generation to interactive verification of functional programs including compilers for C-like and functional languages. All these component specifications and domain-specific reasoning techniques are defined and justified against common foundations in the Coq proof assistant. Connecting these components is a minimalistic specification style based on functional programs and assertions over simple objects, omnisemantics for program execution, and basic separation logic for memory layout. This design enables us to bring the components together in a top-level correctness theorem that can be audited without understanding or trusting the internal interfaces and tools. Our case study is a simple cryptographic server for flipping of a bit of state through public-key authenticated network messages, and its proof shows total functional correctness including static bounds on memory usage. This paper also describes our experiences with the specific verification tools we build upon, along with detailed analysis of reasons behind the widely varying levels of productivity we experienced between combinations of tools and tasks. 
    more » « less