skip to main content

Search for: All records

Award ID contains: 1811894

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Cohen, Liron and (Ed.)
    We present a networked key-value server, implemented in C and formally verified in Coq. The server interacts with clients using a subset of the HTTP/1.1 protocol and is specified and verified using interaction trees and the Verified Software Toolchain. The codebase includes a reusable and fully verified C string library that provides 17 standard POSIX string functions and 17 general purpose non-POSIX string functions. For the KVServer socket system calls, we establish a refinement relation between specifications at user-space level and at CertiKOS kernel-space level. 
    more » « less
  2. Yoshida, Nobuko (Ed.)
    Modularity - the partitioning of software into units of functionality that interact with each other via interfaces - has been the mainstay of software development for half a century. In case of the C language, the main mechanism for modularity is the compilation unit / header file abstraction. This paper complements programmatic modularity for C with modularity idioms for specification and verification in the context of Verifiable C, an expressive separation logic for CompCert Clight. Technical innovations include (i) abstract predicate declarations – existential packages that combine Parkinson & Bierman’s abstract predicates with their client-visible reasoning principles; (ii) residual predicates, which help enforcing data abstraction in callback-rich code; and (iii) an application to pure (Smalltalk-style) objects that connects code verification to model-level reasoning about features such as subtyping, self, inheritance, and late binding. We introduce our techniques using concrete example modules that have all been verified using the Coq proof assistant and combine to fully linked verified programs using a novel, abstraction-respecting component composition rule for Verifiable C. 
    more » « less
  3. null (Ed.)
    The type-theoretic notions of existential abstraction, subtyping, subsumption, and intersection have useful analogues in separation-logic proofs of imperative programs. We have implemented these as an enhancement of the verified software toolchain (VST). VST is an impredicative concurrent separation logic for the C language, implemented in the Coq proof assistant, and proved sound in Coq. For machine-checked functional-correctness verification of software at scale, VST embeds its expressive program logic in dependently typed higher-order logic (CiC). Specifications and proofs in the program logic can leverage the expressiveness of CiC—so users can overcome the abstraction gaps that stand in the way of top-to-bottom verification: gaps between source code verification, compilation, and domain-specific reasoning, and between different analysis techniques or formalisms. Until now, VST has supported the specification of a program as a flat collection of function specifications (in higher-order separation logic)—one proves that each function correctly implements its specification, assuming the specifications of the functions it calls. But what if a function has more than one specification? In this work, we exploit type-theoretic concepts to structure specification interfaces for C code. This brings modularity principles of modern software engineering to concrete program verification. Previous work used representation predicates to enable data abstraction in separation logic. We go further, introducing function-specification subsumption and intersection specifications to organize the multiple specifications that a function is typically associated with. As in type theory, if 𝜙 is a of 𝜓, that is 𝜙<:𝜓, then 𝑥:𝜙 implies 𝑥:𝜓, meaning that any function satisfying specification 𝜙 can be used wherever a function satisfying 𝜓 is demanded. Subsumption incorporates separation-logic framing and parameter adaptation, as well as step-indexing and specifications constructed via mixed-variance functors (needed for C’s function pointers). 
    more » « less
  4. Separation logic is a useful tool for proving the correctness of programs that manipulate memory, especially when the model of memory includes higher-order state: Step-indexing, predicates in the heap, and higher-order ghost state have been used to reason about function pointers, data structure invariants, and complex concurrency patterns. On the other hand, the behavior of system features (e.g., operating systems) and the external world (e.g., communication between components) is usually specified using first-order formalisms. In principle, the soundness theorem of a separation logic is its interface with first-order theorems, but the soundness theorem may implicitly make assumptions about how other components are specified, limiting its use. In this paper, we show how to extend the higher-order separation logic of the Verified Software Toolchain to interface with a first-order verified operating system, in this case CertiKOS, that mediates its interaction with the outside world. The resulting system allows us to prove the correctness of C programs in separation logic based on the semantics of system calls implemented in CertiKOS. It also demonstrates that the combination of interaction trees + CompCert memories serves well as a lingua franca to interface and compose two quite different styles of program verification. 
    more » « less
  5. Representation predicates enable data abstraction in separation logic, but when the same concrete implementation may need to be abstracted in different ways, one needs a notion of subsumption. We demonstrate function-specification subtyping, analogous to subtyping, with a subsumption rule: if ϕ is a of ψ, that is ϕ< : ψ, then x: ϕ implies x: ψ, meaning that any function satisfying specification ϕ can be used wherever a function satisfying ψ is demanded. We extend previous notions of Hoare-logic sub-specification, which already included parameter adaption, to include framing (necessary for separation logic) and impredicative bifunctors (necessary for higher-order functions, i.e. function pointers). We show intersection specifications, with the expected relation to subtyping. We show how this enables compositional modular verification of the functional correctness of C programs, in Coq, with foundational machine-checked proofs of soundness. 
    more » « less