skip to main content


Title: AutoQ: Automated Kernel-Wise Neural Network Quantization
Network quantization is one of the most hardware friendly techniques to enable the deployment of convolutional neural networks (CNNs) on low-power mobile devices. Recent network quantization techniques quantize each weight kernel in a convolutional layer independently for higher inference accuracy, since the weight kernels in a layer exhibit different variances and hence have different amounts of redundancy. The quantization bitwidth or bit number (QBN) directly decides the inference accuracy, latency, energy and hardware overhead. To effectively reduce the redundancy and accelerate CNN inferences, various weight kernels should be quantized with different QBNs. However, prior works use only one QBN to quantize each convolutional layer or the entire CNN, because the design space of searching a QBN for each weight kernel is too large. The hand-crafted heuristic of the kernel-wise QBN search is so sophisticated that domain experts can obtain only sub-optimal results. It is difficult for even deep reinforcement learning (DRL) DDPG-based agents to find a kernel-wise QBN configuration that can achieve reasonable inference accuracy. In this paper, we propose a hierarchical-DRL-based kernel-wise network quantization technique, AutoQ, to automatically search a QBN for each weight kernel, and choose another QBN for each activation layer. Compared to the models quantized by the state-of-the-art DRL-based schemes, on average, the same models quantized by AutoQ reduce the inference latency by 54.06%, and decrease the inference energy consumption by 50.69%, while achieving the same inference accuracy.  more » « less
Award ID(s):
1908992 1909509
NSF-PAR ID:
10167903
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
International Conference on Learning Representations
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The ever-growing parameter size and computation cost of Convolutional Neural Network (CNN) models hinder their deployment onto resource-constrained platforms. Network pruning techniques are proposed to remove the redundancy in CNN parameters and produce a sparse model. Sparse-aware accelerators are also proposed to reduce the computation cost and memory bandwidth requirements of inference by leveraging the model sparsity. The irregularity of sparse patterns, however, limits the efficiency of those designs. Researchers proposed to address this issue by creating a regular sparsity pattern through hardware-aware pruning algorithms. However, the pruning rate of these solutions is largely limited by the enforced sparsity patterns. This limitation motivates us to explore other compression methods beyond pruning. With two decoupled computation stages, we found that kernel decomposition could potentially take the processing of the sparse pattern off from the critical path of inference and achieve a high compression ratio without enforcing the sparse patterns. To exploit these advantages, we propose ESCALATE, an algorithm-hardware co-design approach based on kernel decomposition. At algorithm level, ESCALATE reorganizes the two computation stages of the decomposed convolution to enable a stream processing of the intermediate feature map. We proposed a hybrid quantization to exploit the different reuse frequency of each part of the decomposed weight. At architecture level, ESCALATE proposes a novel ‘Basis-First’ dataflow and its corresponding microarchitecture design to maximize the benefits brought by the decomposed convolution. 
    more » « less
  2. High-quality 3D image recognition is an important component of many vision and robotics systems. However, the accurate processing of these images requires the use of compute-expensive 3D Convolutional Neural Networks (CNNs). To address this challenge, we propose the use of Spiking Neural Networks (SNNs) that are generated from iso-architecture CNNs and trained with quantization-aware gradient descent to optimize their weights, membrane leak, and firing thresholds. During both training and inference, the analog pixel values of a 3D image are directly applied to the input layer of the SNN without the need to convert to a spike-train. This significantly reduces the training and inference latency and results in high degree of activation sparsity, which yields significant improvements in computational efficiency. However, this introduces energy-hungry digital multiplications in the first layer of our models, which we propose to mitigate using a processing-in-memory (PIM) architecture. To evaluate our proposal, we propose a 3D and a 3D/2D hybrid SNN-compatible convolutional architecture and choose hyperspectral imaging (HSI) as an application for 3D image recognition. We achieve overall test accuracy of 98.68, 99.50, and 97.95% with 5 time steps (inference latency) and 6-bit weight quantization on the Indian Pines, Pavia University, and Salinas Scene datasets, respectively. In particular, our models implemented using standard digital hardware achieved accuracies similar to state-of-the-art (SOTA) with ~560.6× and ~44.8× less average energy than an iso-architecture full-precision and 6-bit quantized CNN, respectively. Adopting the PIM architecture in the first layer, further improves the average energy, delay, and energy-delay-product (EDP) by 30, 7, and 38%, respectively. 
    more » « less
  3. Model compression is an important technique to facilitate efficient embedded and hardware implementations of deep neural networks (DNNs), a number of prior works are dedicated to model compression techniques. The target is to simultaneously reduce the model storage size and accelerate the computation, with minor effect on accuracy. Two important categories of DNN model compression techniques are weight pruning and weight quantization. The former leverages the redundancy in the number of weights, whereas the latter leverages the redundancy in bit representation of weights. These two sources of redundancy can be combined, thereby leading to a higher degree of DNN model compression. However, a systematic framework of joint weight pruning and quantization of DNNs is lacking, thereby limiting the available model compression ratio. Moreover, the computation reduction, energy efficiency improvement, and hardware performance overhead need to be accounted besides simply model size reduction, and the hardware performance overhead resulted from weight pruning method needs to be taken into consideration. To address these limitations, we present ADMM-NN, the first algorithm-hardware co-optimization framework of DNNs using Alternating Direction Method of Multipliers (ADMM), a powerful technique to solve non-convex optimization problems with possibly combinatorial constraints. The first part of ADMM-NN is a systematic, joint framework of DNN weight pruning and quantization using ADMM. It can be understood as a smart regularization technique with regularization target dynamically updated in each ADMM iteration, thereby resulting in higher performance in model compression than the state-of-the-art. The second part is hardware-aware DNN optimizations to facilitate hardware-level implementations. We perform ADMM-based weight pruning and quantization considering (i) the computation reduction and energy efficiency improvement, and (ii) the hardware performance overhead due to irregular sparsity. The first requirement prioritizes the convolutional layer compression over fully-connected layers, while the latter requires a concept of the break-even pruning ratio, defined as the minimum pruning ratio of a specific layer that results in no hardware performance degradation. Without accuracy loss, ADMM-NN achieves 85× and 24× pruning on LeNet-5 and AlexNet models, respectively, --- significantly higher than the state-of-the-art. The improvements become more significant when focusing on computation reduction. Combining weight pruning and quantization, we achieve 1,910× and 231× reductions in overall model size on these two benchmarks, when focusing on data storage. Highly promising results are also observed on other representative DNNs such as VGGNet and ResNet-50. We release codes and models at https://github.com/yeshaokai/admm-nn. 
    more » « less
  4. The ever-increasing number of layers, millions of parameters, and large data volume make deep learning workloads resource-intensive and power-hungry. In this paper, we develop a convolutional neural network (CNN) acceleration framework, named MLCNN, which explores algorithm-hardware co-design to achieve cross-layer cooperative optimization and acceleration. MLCNN dramatically reduces computation and on-off chip communication, improving CNN’s performance. To achieve this, MLCNN reorders the position of nonlinear activation layers and pooling layers, which we prove results in a negligible accuracy loss; then the convolutional layer and pooling layer are cooptimized by means of redundant multiplication elimination, local addition reuse, and global addition reuse. To the best of our knowledge, MLCNN is the first of its kind that incorporates cooperative optimization across convolutional, activation, and pooling layers. We further customize the MLCNN accelerator to take full advantage of cross-layer CNN optimization to reduce both computation and on-off chip communication. Our analysis shows that MLCNN can significantly reduce (up to 98%) multiplications and additions. We have implemented a prototype of MLCNN and evaluated its performance on several widely used CNN models using both an accelerator-level cycle and energy model and RTL implementation. Experimental results show that MLCNN achieves 3.2× speedup and 2.9× energy efficiency compared with dense CNNs. MLCNN’s optimization methods are orthogonal to other CNN acceleration techniques, such as quantization and pruning. Combined with quantization, our quantized MLCNN gains a 12.8× speedup and 11.3× energy efficiency compared with DCNN. 
    more » « less
  5. Precise monitoring of respiratory rate in premature newborn infants is essential to initiating medical interventions as required. Wired technologies can be invasive and obtrusive to the patients. We propose a deep-learning-enabled wearable monitoring system for premature newborn infants, where respiratory cessation is predicted using signals that are collected wirelessly from a non-invasive wearable Bellypatch put on the infant’s body. We propose a five-stage design pipeline involving data collection and labeling, feature scaling, deep learning model selection with hyperparameter tuning, model training and validation, and model testing and deployment. The model used is a 1-D convolutional neural network (1DCNN) architecture with one convolution layer, one pooling layer, and three fully-connected layers, achieving 97.15% classification accuracy. To address the energy limitations of wearable processing, several quantization techniques are explored, and their performance and energy consumption are analyzed for the respiratory classification task. Results demonstrate a reduction of energy footprints and model storage overhead with a considerable degradation of the classification accuracy, meaning that quantization and other model compression techniques are not the best solution for respiratory classification problem on wearable devices. To improve accuracy while reducing the energy consumption, we propose a novel spiking neural network (SNN)-based respiratory classification solution, which can be implemented on event-driven neuromorphic hardware platforms. To this end, we propose an approach to convert the analog operations of our baseline trained 1DCNN to their spiking equivalent. We perform a design-space exploration using the parameters of the converted SNN to generate inference solutions having different accuracy and energy footprints. We select a solution that achieves an accuracy of 93.33% with 18x lower energy compared to the baseline 1DCNN model. Additionally, the proposed SNN solution achieves similar accuracy as the quantized model with a 4× lower energy. 
    more » « less