skip to main content

Title: Resources for Faculty Development: Implicit Bias, Deficit Thinking, and Active Learning
The Improving Student Experiences to Increase Student Engagement (ISE-2) grant was awarded to Texas A&M University by the National Science Foundation, through EEC-Engineering Diversity Activities (Grant No. 1648016) with the goal of increasing student engagement and retention in the College of Engineering. The major component of the intervention was a faculty development program aimed to increase active learning, improve classroom climates, and decrease implicit bias and deficit thinking. Faculty teaching first- and second-year Engineering courses participated in the ISE-2 faculty development program, with the first cohort (n = 10) in Summer 2017 and the second cohort (n = 5) in Summer 2018. This paper describes the content of each of these components of the faculty development program and provides access to a Google drive (still in development at the time of the abstract) with resources for others to use. The faculty development program consisted of three workshops, a series of coffee hour conversations, and two deliverables from the participants (a teaching plan at the conclusion of the summer training and a final reflection a year following the training). Anchoring the program was a framework for teaching in a diverse classroom (Adams & Love, 2009). Workshop 1 (early May) consisted of an more » overview of the ISE-2 program. During the first workshop, faculty were introduced to social cognitive biases and the behaviors that result from these biases. During this workshop, the ISE-2 team shared findings from a climate study related to the classroom experiences of students at the College of Engineering. Workshop 2 (mid-May) focused on how undergraduate students learn, provided evidence for the effectiveness of active learning strategies, and exposed faculty participants to active learning strategies. Workshop 3 (early August) integrated the material from the first two workshops as faculty participants prepared to apply the material to their own teaching. Prior to each workshop, the faculty participants were provided with pre-workshop readings to familiarize them with some of the content matter. Coffee hour conversations—informal discussions between the participating faculty and the ISE-2 team centered around a teaching topic selected by participants—were conducted on a near-weekly basis between the second and third workshops. Handouts and worksheets were provided at each coffee hour and served to guide the coffee hour discussions. After the last workshop but before the Fall semester, faculty participants created a teaching plan to incorporate what they learned in the ISE-2 program into their own teaching. At the end of the academic year, the faculty participants are tasked with completing a final reflection on how ISE-2 has affected their teaching in the previous academic year. In this paper, we will report the content of each of the three workshops and explain how these workshops are related to the overarching goals of the ISE-2 program. Then, we will discuss how each of the coffee hour conversation topics complement the material covered in the workshops. Lastly, we will explore the role of the teaching plans and final reflections in changing instructional practices for faculty. « less
Authors:
; ; ; ; ;
Award ID(s):
1648016
Publication Date:
NSF-PAR ID:
10167910
Journal Name:
2019 ASEE Annual Conference & Expositio
Sponsoring Org:
National Science Foundation
More Like this
  1. “Improving Student Experiences to Increase Student Engagement” (ISE-2) was awarded to Texas A&M University by the National Science Foundation, through EEC-Engineering Diversity Activities. ISE-2 is a faculty development program focused on reducing implicit bias and increasing active learning, with the goals of (a) increasing student engagement, success, and retention, and (b) ultimately seeing greater increases for underrepresented minority (URM), women, and first-generation students. Ten faculty teaching first- and second-year Engineering courses participated in the first cohort of ISE-2 in Summer 2017, which consisted of three workshops and six informal “coffee conversations”. At the conclusion of the workshops, each faculty was tasked with completing a teaching plan for the Fall 2017 semester, to incorporate the strategies and knowledge from ISE-2 into the courses they plan to teach. Focus groups with the ISE-2 faculty were conducted in Fall 2017 to obtain feedback about the faculty development program. Classroom observations were conducted using environmental scans and the Classroom Observation Protocol for Undergraduate STEM (COPUS)1 to assess the classroom climate of faculty in the experimental (ISE-2) and control groups. Student surveys were also administered to students who were taught by ISE-2 faculty and control group faculty to assess student engagement and classroom climate. Whilemore »the project is still ongoing, feedback from faculty regarding ISE-2 have been positive.« less
  2. “Improving Student Experiences to Increase Student Engagement” (ISE-2) was funded by the National Science Foundation, through EEC-Engineering Diversity Activities, at Texas A&M University. The grant activity focuses on a faculty development program for faculty who teach first- and second-year engineering courses. As part of the evaluation plan, classroom observations were conducted by the ISE-2 team to assess the classroom climate and teaching practices of ISE-2 faculty participants and non-participant faculty peers. Since Spring 2017, the team has conducted 78 classroom observations. The ISE-2 evaluation team had expert classroom observers train novice observers. The observer training sessions became the basis of this DIY Classroom Observation Toolkit, which is available for people who are interested in conducting systematic classroom observations but have limited experience with qualitative coding and observational research. The goal of the Toolkit is for these individuals to teach themselves using the Toolkit components: a) an annotated bibliography introducing articles that are helpful to understanding and conducting classroom observations, b) training videos teaching viewers to conduct classroom observations using a protocol, and c) a series of sample classroom videos and validation keys for each of the sample videos. This paper serves as a user manual for the Toolkit, which canmore »be accessed at http://bit.ly/diyclassobtoolkit.« less
  3. The development of tools that promote active learning in engineering disciplines is critical. It is widely understood that students engaged in active learning environments outperform those taught using passive methods. Previously, we reported on the development and implementation of hands-on Low-Cost Desktop Learning Modules (LCDLMs) that replicate real-world industrial equipment which serves to create active learning environments. Thus far, miniaturized venturi meter, hydraulic loss, and double-pipe and shell & tube heat exchanger DLMs have been utilized by hundreds of students across the country. It was demonstrated that the use of DLMs in face-to-face classrooms results in statistically significant improvements in student performance as well as increases in student motivation compared to students taught in a traditional lecture-only style classroom. Last year, participants in the project conducted 45 implementations including over 600 DLMs at 24 universities across the country reaching more than 1,000 students. In this project, we report on the significant progress made in broad dissemination of DLMs and accompanying pedagogy. We demonstrate that DLMs serve to increase student learning gains not only in face-to-face environments but also in virtual learning environments. Instructional videos were developed to aid in DLM-based learning during the COVID-19 pandemic when instructors were limited tomore »virtual instruction. Preliminary results from this work show that students working with DLMs even in a virtual setting significantly outperform those taught without DLM-associated materials. Significant progress has also been made on the development of a new DLM cartridge: a see-through 3D-printed miniature fluidized bed. The new 3D printing methodology will allow for rapid prototyping and streamlined development of DLMs. A 3D-printed evaporative cooling tower DLM will also be developed in the coming year. In October 2020, the team held a virtual implementers workshop to train new participating faculty in DLM use and implementation. In total, 13 new faculty participants from 10 universities attended the 6-hour, 2-day workshop and plan to implement DLMs in their classrooms during this academic year. In the last year, this project was disseminated in 8 presentations at the American Society for Engineering Education (ASEE) Virtual Conference (June 2020) and American Institute of Chemical Engineers Annual Conference (November 2019) as well as the AIChE virtual Community of Practice Labs Group and a seminar at a major university, ultimately disseminating DLM pedagogy to approximately 200 individuals including approximately 120 university faculty. Further, the former group postdoc has accepted an instructor faculty position at University of Wisconsin Madison where she will teach unit operations among other subjects; she and the remainder of the team believe the LCDLM project has prepared her well for that position. In the remaining 2.5 years of the project, we will continue to evaluate the effectiveness of DLMs in teaching key heat transfer and fluid dynamics concepts thru implementations in the rapidly expanding pool of participating universities. Further, we continue our ongoing efforts in creating the robust support structure necessary for large-scale adoption of hands-on educational tools for promotion of hands-on interactive student learning.« less
  4. A 2019 report from the National Academies on Minority Serving Institutions (MSIs) concluded that MSIs need to change their culture to successfully serve students with marginalized racial and/or ethnic identities. The report recommends institutional responsiveness to meet students “where they are,” metaphorically, creating supportive campus environments and providing tailored academic and social support structures. In recent years, the faculty, staff, and administrators at California State University, Los Angeles have made significant efforts to enhance student success through multiple initiatives including a summer bridge program, first-year in engineering program, etc. However, it has become clear that more profound changes are needed to create a culture that meets students “where they are.” In 2020, we were awarded NSF support for Eco-STEM, an initiative designed to change a system that demands "college-ready" students into one that is "student-ready." Aimed at shifting the deficit mindset prevailing in engineering education, the Eco-STEM project embraces an asset-based ecosystem model that thinks of education as cultivation, and ideas as seeds we are planting, rather than a system of standards and quality checks. This significant paradigm and culture transformation is accomplished through: 1) The Eco-STEM Faculty Fellows’ Community of Practice (CoP), which employs critically reflective dialogue[ ][ ]more »to enhance the learning environment using asset-based learner-centered instructional approaches; 2) A Leadership CoP with department chairs and program directors that guides cultural change at the department/program level; 3) A Facilitators’ CoP that prepares facilitators to lead, sustain, update, and expand the Faculty and Leadership CoPs; 4) Reform of the teaching evaluation system to sustain the cultural changes. This paper presents the progress and preliminary findings of the Eco-STEM project. During the first project year, the project team formulated the curriculum for the Faculty CoP with a focus on inclusive pedagogy, community cultural wealth, and community building, developed a classroom peer observation tool to provide formative data for teaching reflection, and designed research inquiry tools. The latter investigates the following research questions: 1) To what extent do the Eco-STEM CoPs effectively shift the mental models of participants from a factory-like model to an ecosystem model of education? 2) To what extent does this shift support an emphasis on the assets of our students, faculty, and staff members and, in turn, allow for enhanced motivation, excellence and success? 3) To what extent do new faculty assessment tools designed to provide feedback that reflects ecosystem-centric principles and values allow for individuals within the system to thrive? In Fall 2021, the first cohort of Eco-STEM Faculty Fellows were recruited, and rich conversations and in-depth reflections in our CoP meetings indicated Fellows’ positive responses to both the CoP curriculum and facilitation practices. This paper offers a work-in-progress introduction to the Eco-STEM project, including the Faculty CoP, the classroom peer observation tool, and the proposed research instruments. We hope this work will cultivate broader conversations within the engineering education research community about cultural change in engineering education and methods towards its implementation.« less
  5. The development of tools that promote active learning in engineering disciplines is critical. It is widely understood that students engaged in active learning environments outperform those taught using passive methods. Previously, we reported on the development and implementation of hands-on Low-Cost Desktop Learning Modules (LCDLMs) that replicate real-world industrial equipment which serves to create active learning environments. Thus far, miniaturized venturi meter, hydraulic loss, and double-pipe and shell & tube heat exchanger DLMs have been utilized by hundreds of students across the country. It was demonstrated that the use of DLMs in face-to-face classrooms results in statistically significant improvements in student performance as well as increases in student motivation compared to students taught in a traditional lecture-only style classroom. Last year, participants in the project conducted 45 implementations including over 600 DLMs at 24 universities across the country reaching more than 1,000 students. In this project, we report on the significant progress made in broad dissemination of DLMs and accompanying pedagogy. We demonstrate that DLMs serve to increase student learning gains not only in face-toface environments but also in virtual learning environments. Instructional videos were developed to aid in DLM-based learning during the COVID-19 pandemic when instructors were limited tomore »virtual instruction. Preliminary results from this work show that students working with DLMs even in a virtual setting significantly outperform those taught without DLM-associated materials. Significant progress has also been made on the development of a new DLM cartridge: a see-through 3Dprinted miniature fluidized bed. The new 3D printing methodology will allow for rapid prototyping and streamlined development of DLMs. A 3D-printed evaporative cooling tower DLM will also be developed in the coming year. In October 2020, the team held a virtual implementers workshop to train new participating faculty in DLM use and implementation. In total, 13 new faculty participants from 10 universities attended the 6-hour, 2- day workshop and plan to implement DLMs in their classrooms during this academic year. In the last year, this project was disseminated in 8 presentations at the ASEE Virtual Conference (June 2020) and American Institute of Chemical Engineers Annual Conference (November 2019) as well as the AIChE virtual Community of Practice Labs Group and a seminar at a major university, ultimately disseminating DLM pedagogy to approximately 200 individuals including approximately 120 university faculty. Further, the former group postdoc has accepted an instructor faculty position at University of Wisconsin Madison where she will teach unit operations among other subjects; she and the remainder of the team believe the LCDLM project has prepared her well for that position. In the remaining 2.5 years of the project, we will continue to evaluate the effectiveness of DLMs in teaching key heat transfer and fluid dynamics concepts thru implementations in the rapidly expanding pool of participating universities. Further, we continue our ongoing efforts in creating the robust support structure necessary for large-scale adoption of hands-on educational tools for promotion of hands-on interactive student learning.« less