skip to main content


This content will become publicly available on June 1, 2024

Title: Engaging Future Engineers through Active Participation in Diversity, Equity, Inclusion, and Belonging
It is important for future engineers to understand themselves in relation to the many cultural influences they may encounter during their career, and to confront their own biases when interacting with colleagues whose cultural backgrounds are different from their own. This paper describes and evaluates a series of nine diversity, equity, and inclusion (DEI) workshops developed and implemented during the summer of 2022 for high school and entering first-year college students enrolled in the Research, Academics, and Mentoring Pathways (RAMP) six week engineering summer bridge program at University of Massachusetts Lowell. The workshops incorporated activities designed to create an environment fostering respect, belonging, and acceptance to make teamwork more inclusive and effective. Each workshop was based on collaborative learning and used a broad range of strategies to engage students as active participants in learning about diversity, equity, and inclusion within the context of teamwork. To develop the workshops, the facilitators aligned the activities with key themes from chapters in the book From Athletics to Engineering: 8 Ways to Support Diversity, Equity, and Inclusion for All [1]. The summer bridge program was evaluated using quantitative and qualitative data collected throughout the program and upon its conclusion tracking students’ reactions and levels of engagement in each of the program components. This included a pre-survey, mid-semester survey, post-survey, and weekly journal prompts on Google Classroom. We also used the Universality-Diversity scale [2] to measure any pre-post changes in students’ attitudes towards diversity. With regard to the workshops, an analysis of student responses indicated a high level of satisfaction and sense of accomplishment. Students reported they enjoyed getting to know each other better and that the DEI activities were interactive, educational, and engaging.  more » « less
Award ID(s):
2105718
NSF-PAR ID:
10426265
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the 2023 ASEE Annual Conference & Exposition
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Improving Student Experiences to Increase Student Engagement (ISE-2) grant was awarded to Texas A&M University by the National Science Foundation, through EEC-Engineering Diversity Activities (Grant No. 1648016) with the goal of increasing student engagement and retention in the College of Engineering. The major component of the intervention was a faculty development program aimed to increase active learning, improve classroom climates, and decrease implicit bias and deficit thinking. Faculty teaching first- and second-year Engineering courses participated in the ISE-2 faculty development program, with the first cohort (n = 10) in Summer 2017 and the second cohort (n = 5) in Summer 2018. This paper describes the content of each of these components of the faculty development program and provides access to a Google drive (still in development at the time of the abstract) with resources for others to use. The faculty development program consisted of three workshops, a series of coffee hour conversations, and two deliverables from the participants (a teaching plan at the conclusion of the summer training and a final reflection a year following the training). Anchoring the program was a framework for teaching in a diverse classroom (Adams & Love, 2009). Workshop 1 (early May) consisted of an overview of the ISE-2 program. During the first workshop, faculty were introduced to social cognitive biases and the behaviors that result from these biases. During this workshop, the ISE-2 team shared findings from a climate study related to the classroom experiences of students at the College of Engineering. Workshop 2 (mid-May) focused on how undergraduate students learn, provided evidence for the effectiveness of active learning strategies, and exposed faculty participants to active learning strategies. Workshop 3 (early August) integrated the material from the first two workshops as faculty participants prepared to apply the material to their own teaching. Prior to each workshop, the faculty participants were provided with pre-workshop readings to familiarize them with some of the content matter. Coffee hour conversations—informal discussions between the participating faculty and the ISE-2 team centered around a teaching topic selected by participants—were conducted on a near-weekly basis between the second and third workshops. Handouts and worksheets were provided at each coffee hour and served to guide the coffee hour discussions. After the last workshop but before the Fall semester, faculty participants created a teaching plan to incorporate what they learned in the ISE-2 program into their own teaching. At the end of the academic year, the faculty participants are tasked with completing a final reflection on how ISE-2 has affected their teaching in the previous academic year. In this paper, we will report the content of each of the three workshops and explain how these workshops are related to the overarching goals of the ISE-2 program. Then, we will discuss how each of the coffee hour conversation topics complement the material covered in the workshops. Lastly, we will explore the role of the teaching plans and final reflections in changing instructional practices for faculty. 
    more » « less
  2. In this paper, we present the design and implementation of a set of diversity, equity, and inclusion (DEI) based modules, created to be deployed in two courses: one in introductory computing and one in algorithms. Our objective is to ensure that engineering undergraduate students, who are not historically exposed to DEI content, are introduced to these important topics in the context of their technical coursework and that they understand the relevance of DEI to their careers. We created 6 modules that cover a wide range of topics including untold stories throughout the history of computing and algorithms, identity and intersectionality in engineering, designs from engineering that have high societal impact, the LGBTQ+ experience in engineering, engineering and mental health, and cultural diversity within engineering. Each module gives a brief overview of the topic, followed by an associated assignment. We made all of these modules available to the students in the two courses and told them to choose one to complete. Each student engaged with their selected module in four specific ways: (1) watching a relevant video; (2) reading and annotating a provided article; (3) responding in a written reflection to a set of specific prompts relevant to the module; and (4) conducting an interview with a peer or community member using a list of suggested questions about the module’s contents . Afterwards, we required students to communicate what they learned through completing and submitting a graded final deliverable. This deliverable can be a video, slide presentation, a written op-ed piece, or a piece of art about the work they completed in the module. We evaluate the content of the modules through a survey that assesses the students’ interest in the modules and determines the utility of the modules in the context of the study of computing and algorithms. Based on the feedback of these surveys along with feedback from the instructors of the courses, we will further develop and improve the structure and content of these modules and expand their reach to additional engineering courses and disciplines. 
    more » « less
  3. POSTER. Presented at the Symposium (9/12/2019) Abstract: The Academy of Engineering Success (AcES) employs literature-based, best practices to support and retain underrepresented students in engineering through graduation with the ultimate goal of diversifying the engineering workforce. AcES was established in 2012 and has been supported via NSF S-STEM award number 1644119 since 2016. The 2016, 2017, and 2018 cohorts consist of 12, 20, and 22 students, respectively. Five S-STEM supported scholarships were awarded to the 2016 cohort, seven scholarships were awarded to students from the 2017 cohort, and six scholarships were awarded to students from the 2018 cohort. AcES students participate in a one-week summer bridge experience, a common fall semester course focused on professional development, and a common spring semester course emphasizing the role of engineers in societal development. Starting with the summer bridge experience, and continuing until graduation, students are immersed in curricular and co-curricular activities with the goals of fostering feelings of institutional inclusion and belonging in engineering, providing academic support and student success skills, and professional development. The aforementioned goals are achieved by providing (1) opportunities for faculty-student, student-student, and industry mentor-student interaction, (2) academic support, and student success education in areas such as time management and study skills, and (3) facilitated career and major exploration. Four research questions are being examined, (1) What is the relationship between participation in the AcES program and participants’ academic success?, (2) What aspects of the AcES program most significantly impact participants’ success in engineering, (3) How do AcES students seek to overcome challenges in studying engineering, and (4) What is the longitudinal impact of the AcES program in terms of motivation, perceptions, feelings of inclusion, outcome expectations of the participants and retention? Students enrolled in the AcES program participate in the GRIT, LAESE, and MSLQ surveys, focus groups, and one-on-one interviews at the start and end of each fall semester and at the end of the spring semester. The surveys provide a measure of students’ GRIT, general self-efficacy, engineering self-efficacy, test anxiety, math outcome efficacy, intrinsic value of learning, inclusion, career expectations, and coping efficacy. Focus group and interview responses are analyzed in order to answer research questions 2, 3, and 4. Survey responses are analyzed to answer research question 4, and institutional data such as GPA is used to answer research question 1. An analysis of the 2017 AcES cohort survey responses produced a surprising result. When the responses of AcES students who retained were compared to the responses of AcES students who left engineering, those who left engineering had higher baseline values of GRIT, career expectations, engineering self-efficacy, and math outcome efficacy than those students who retained. A preliminary analysis of the 2016, 2017, and 2018 focus group and one-on-one interview responses indicates that the Engineering Learning Center, tutors, organized out of class experiences, first-year seminar, the AcES cohort, the AcES summer bridge, the AcES program, AcES Faculty/Staff, AcES guest lecturers, and FEP faculty/Staff are viewed as valuable by students and cited with contributing to their success in engineering. It is also evident that AcES students seek help from peers, seek help from tutors, use online resources, and attend office hours to overcome their challenges in studying engineering. 
    more » « less
  4. Abstract

    Diversity, equity, and inclusion (DEI) are interconnected with bioengineering, yet have historically been absent from accreditation standards and curricula. Toward educating DEI-competent bioengineers and meeting evolving accreditation requirements, we took a program-level approach to incorporate, catalog, and assess DEI content through the bioengineering undergraduate program. To support instructors in adding DEI content and inclusive pedagogy, our team developed a DEI planning worksheet and surveyed instructors pre- and post-course. Over the academic year, 74% of instructors responded. Of responding instructors, 91% described at least one DEI curricular content improvement, and 88% incorporated at least one new inclusive pedagogical approach. Based on the curricular adjustments reported by instructors, we grouped the bioengineering-related DEI content into five DEI competency categories: bioethics, inclusive design, inclusive scholarship, inclusive professionalism, and systemic inequality. To assess the DEI content incorporation, we employed direct assessment via course assignments, end-of-module student surveys, end-of-term course evaluations, and an end-of-year program review. When asked how much their experience in the program helped them develop specific DEI competencies, students reported a relatively high average of 3.79 (scale of 1 = “not at all” to 5 = “very much”). Additionally, based on student performance in course assignments and other student feedback, we found that instructors were able to effectively incorporate DEI content into a wide variety of courses. We offer this framework and lessons learned to be adopted by programs similarly motivated to train DEI-competent engineering professionals and provide an equitable, inclusive education.

     
    more » « less
  5. This Complete Evidence-based Practice paper will describe how three different public urban research universities designed, executed, and iterated Summer Bridge programming for a subset of incoming first-year engineering students over the course of three consecutive years. There were commonalities between each institution’s Summer Bridge, as well as unique aspects catering to the specific needs and structures of each institution. Both these commonalities and unique aspects will be discussed, in addition to the processes of iteration and improvement, target student populations, and reported student outcomes. Finally, recommendations for other institutions seeking to launch or refine similar programming will be shared. Summer Bridge programming at each of the three institutions shared certain communalities. Mostly notably, each of the three institutions developed its Summer Bridge as an additional way to provide support for students receiving an NSF S-STEM scholarship. The purpose of each Summer Bridge was to build community among these students, prepare them for the academic rigor of first-year engineering curriculum, and edify their STEM identity and sense of belonging. Each Summer Bridge was a 3-5 day experience held in the week immediately prior to the start of the Fall semester. In addition to these communalities, each Summer Bridge also had its own unique features. At the first institution, Summer Bridge is focused on increasing college readiness through the transition from summer break into impending coursework. This institution’s Summer Bridge includes STEM special-interest presentations (such as biomedical or electrical engineering) and other development activities (such as communication and growth mindset workshops). Additionally, this institution’s Summer Bridge continues into the fall semester via a 1-credit hour First Year Seminar class, which builds and reinforces student networking and community beyond the summer experience. At the second institution, all students receiving the NSF S-STEM scholarship (not only those who are first-year students) participate in Summer Bridge. This means that S-STEM scholars at this institution participate in Summer Bridge multiple years in a row. Relatedly, after the first year, Summer Bridge transitioned to a student-led and student-delivered program, affording sophomore and junior students leadership opportunities, which not only serve as marketable experience after graduation, but also further builds their sense of STEM identity and belonging. At the third institution, a special focus was given to building community. This was achieved through several means. First, each day of Summer Bridge included a unique team-oriented design challenge where students got to work together and know each other within an engineering context, also reinforcing their STEM identities. Second, students at this institution’s Summer Bridge met their future instructors in an informal, conversational, lunch setting; many students reported this was one of their favorite aspects of Summer Bridge. Finally, Summer Bridge facilitated a first connect between incoming first-year students and their peer mentors (sophomore and junior students also receiving the NSF S-STEM scholarship), with whom they would meet regularly throughout the following fall and spring semesters. Each of the three institutions employed processes of iteration and improvement for their Summer Bridge programming over the course of two or three consecutive years. Through each version and iteration of Summer Bridge, positive student outcomes are demonstrated, including direct student feedback indicating built community among students and the perception that their time spent during Summer Bridge was valuable. Based on the experiences of these three institutions, as well as research on other institutions’ Summer Bridge programming, recommendations for those seeking to launch or refine similar Summer Bridge programming will also be shared. 
    more » « less