skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Developing Emergent Codes for the Classroom Observation Protocol for Undergraduate STEM (COPUS)
This Research Work-in-progress paper presents a project that intends to increase student engagement, retention, and success through the implementation of a faculty development program focused on implicit bias and active learning. To assess the extent to which the program resulted in transformative changes in instructor teaching, the project team conducted classroom observations using minute-by-minute environmental scans and the Classroom Observation Protocol for Undergraduate STEM (COPUS). The project team found that the COPUS could not capture all the behaviors that needed to be observed to assess the faculty development project. Thus, 12 emergent COPUS codes were developed to code the required behaviors. Each code is defined, examples are provided, and excerpts of classroom observations with and without the emergent COPUS codes are examined. The project team thinks the emergent COPUS codes, generally focused on faculty behaviors related to classroom climate, will be useful in other classroom observation projects.  more » « less
Award ID(s):
1648016
PAR ID:
10167912
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
2018 IEEE Frontiers in Education Conference (FIE
Page Range / eLocation ID:
1 to 4
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. “Improving Student Experiences to Increase Student Engagement” (ISE-2) was awarded to Texas A&M University by the National Science Foundation, through EEC-Engineering Diversity Activities. ISE-2 is a faculty development program focused on reducing implicit bias and increasing active learning, with the goals of (a) increasing student engagement, success, and retention, and (b) ultimately seeing greater increases for underrepresented minority (URM), women, and first-generation students. Ten faculty teaching first- and second-year Engineering courses participated in the first cohort of ISE-2 in Summer 2017, which consisted of three workshops and six informal “coffee conversations”. At the conclusion of the workshops, each faculty was tasked with completing a teaching plan for the Fall 2017 semester, to incorporate the strategies and knowledge from ISE-2 into the courses they plan to teach. Focus groups with the ISE-2 faculty were conducted in Fall 2017 to obtain feedback about the faculty development program. Classroom observations were conducted using environmental scans and the Classroom Observation Protocol for Undergraduate STEM (COPUS)1 to assess the classroom climate of faculty in the experimental (ISE-2) and control groups. Student surveys were also administered to students who were taught by ISE-2 faculty and control group faculty to assess student engagement and classroom climate. While the project is still ongoing, feedback from faculty regarding ISE-2 have been positive. 
    more » « less
  2. This research paper investigates how classroom observation tools can be effectively combined to promote engagement in STEM education. Specifically, it explores the integration of the Classroom Observation Protocol for Undergraduate STEM (COPUS) and a culturally responsive Classroom Observation Instrument (COI) to evaluate and improve teaching practices. COPUS, developed by Smith et al. [21], captures instructional dynamics and student-faculty interactions, while the Classroom Observation Instrument COI, created by Dr. Jennifer G. Cromley and the University of Illinois Urbana-Champaign (UIUC) Developing Equity-Minded Engineering Practitioners (DEEP) research team [6], focuses on observing and assessing culturally responsive-related instructional practices. At Morgan State University (MSU), a Historically Black University (HBCU), coders formally trained by the UIUC DEEP team used both tools to analyze classroom recordings of faculty who had undergone professional development in engaging pedagogy. Findings indicate measurable improvements and balanced engagement in the classroom. This fusion of COPUS and COI tools offers a replicable framework for enhancing inclusive STEM instruction and cultivating more equitable learning environments. 
    more » « less
  3. “Improving Student Experiences to Increase Student Engagement” (ISE-2) was funded by the National Science Foundation, through EEC-Engineering Diversity Activities, at Texas A&M University. The grant activity focuses on a faculty development program for faculty who teach first- and second-year engineering courses. As part of the evaluation plan, classroom observations were conducted by the ISE-2 team to assess the classroom climate and teaching practices of ISE-2 faculty participants and non-participant faculty peers. Since Spring 2017, the team has conducted 78 classroom observations. The ISE-2 evaluation team had expert classroom observers train novice observers. The observer training sessions became the basis of this DIY Classroom Observation Toolkit, which is available for people who are interested in conducting systematic classroom observations but have limited experience with qualitative coding and observational research. The goal of the Toolkit is for these individuals to teach themselves using the Toolkit components: a) an annotated bibliography introducing articles that are helpful to understanding and conducting classroom observations, b) training videos teaching viewers to conduct classroom observations using a protocol, and c) a series of sample classroom videos and validation keys for each of the sample videos. This paper serves as a user manual for the Toolkit, which can be accessed at http://bit.ly/diyclassobtoolkit. 
    more » « less
  4. Bati, Ayse Hilal (Ed.)
    One of the primary reasons why students leave STEM majors is due to the poor quality of instruction. Teaching practices can be improved through professional development programs; however, several barriers exist. Creating lasting change by overcoming these barriers is the primary objective of the STEM Faculty Institute (STEMFI). STEMFI was designed according to the framework established by Ajzen’s Theory of Planned Behavior. To evaluate its effectiveness, the Classroom Observation Protocol for Undergraduate STEM (COPUS) tool was used before and after an intensive year-long faculty development program and analyzed using copusprofiles.org , a tool that classifies each COPUS report into one of three instructional styles: didactic, interactive lecture, and student-centered. We report the success of our program in changing faculty teaching behaviors and we categorize them into types of reformers. Then, thematically coded post-participation interviews give us clues into the characteristics of each type of reformer. Our results demonstrate that faculty can significantly improve the student-centeredness of their teaching practices in a relatively short time. We also discuss the implications of faculty attitudes for future professional development efforts. 
    more » « less
  5. Feldon, David (Ed.)
    The Classroom Observation Protocol for Undergraduate STEM (COPUS) provides descriptive feedback to instructors by capturing student and instructor behaviors occurring in the classroom. Due to the increasing prevalence of COPUS data collection, it is important to recognize how researchers determine whether groups of courses or instructors have unique classroom characteristics. One approach uses cluster analysis, highlighted by a recently developed tool, the COPUS Analyzer, that enables the characterization of COPUS data into one of seven clusters representing three groups of instructional styles (didactic, interactive, and student centered). Here, we examine a novel 250 course data set and present evidence that a predictive cluster analysis tool may not be appropriate for analyzing COPUS data. We perform a de novo cluster analysis and compare results with the COPUS Analyzer output and identify several contrasting outcomes regarding course characterizations. Additionally, we present two ensemble clustering algorithms: 1) k-means and 2) partitioning around medoids. Both ensemble algorithms categorize our classroom observation data into one of two clusters: traditional lecture or active learning. Finally, we discuss implications of these findings for education research studies that leverage COPUS data. 
    more » « less