skip to main content

Title: LESS: A Matrix Split and Balance Algorithm for Parallel Circuit (Optical) or Hybrid Data Center Switching and More
The research problem of how to use a high-speed circuit switch, typically an optical switch, to most effectively boost the switching capacity of a datacenter network, has been extensively studied. In this work, we focus on a different but related research problem that arises when multiple (say $s$) parallel circuit switches are used: How to best split a switching workload $D$ into sub-workloads $D_1, D_2, ..., D_s$, and give them to the $s$ switches as their respective workloads, so that the overall makespan of the parallel switching system is minimized? Computing such an optimal split is unfortunately NP-hard, since the circuit/optical switch incurs a nontrivial reconfiguration delay when the switch configuration has to change. In this work, we formulate a weaker form of this problem: How to minimize the total number of nonzero entries in $D_1, D_2, ..., D_s$ (so that the overall reconfiguration cost can be kept low), under the constraint that every row or column sum of $D$ (which corresponds to the workload imposed on a sending or receiving rack respectively) is evenly split? Although this weaker problem is still NP-hard, we are able to design LESS, an approximation algorithm that has a low approximation ratio of only $1+\epsilon$ more » in practice and a low computational complexity of only $O(m^2)$, where $m = \|D\|_0$ is the number of nonzero entries in $D$. Our simulation studies show that LESS results in excellent overall makespan performances under realistic datacenter traffic workloads and parameter settings. « less
Authors:
;  ;
Award ID(s):
1909048 1717947
Publication Date:
NSF-PAR ID:
10167954
Journal Name:
IEEE/ACM 12th International Conference on Utility and Cloud Computing (UCC'19), December 2--5, 2019, Auckland, New Zealand
Page Range or eLocation-ID:
187 to 197
Sponsoring Org:
National Science Foundation
More Like this
  1. The cumulative pebbling complexity of a directed acyclic graph G is defined as cc(G) = min_P ∑_i |P_i|, where the minimum is taken over all legal (parallel) black pebblings of G and |P_i| denotes the number of pebbles on the graph during round i. Intuitively, cc(G) captures the amortized Space-Time complexity of pebbling m copies of G in parallel. The cumulative pebbling complexity of a graph G is of particular interest in the field of cryptography as cc(G) is tightly related to the amortized Area-Time complexity of the Data-Independent Memory-Hard Function (iMHF) f_{G,H} [Joël Alwen and Vladimir Serbinenko, 2015] defined using a constant indegree directed acyclic graph (DAG) G and a random oracle H(⋅). A secure iMHF should have amortized Space-Time complexity as high as possible, e.g., to deter brute-force password attacker who wants to find x such that f_{G,H}(x) = h. Thus, to analyze the (in)security of a candidate iMHF f_{G,H}, it is crucial to estimate the value cc(G) but currently, upper and lower bounds for leading iMHF candidates differ by several orders of magnitude. Blocki and Zhou recently showed that it is NP-Hard to compute cc(G), but their techniques do not even rule out an efficient (1+ε)-approximation algorithmmore »for any constant ε>0. We show that for any constant c > 0, it is Unique Games hard to approximate cc(G) to within a factor of c. Along the way, we show the hardness of approximation of the DAG Vertex Deletion problem on DAGs of constant indegree. Namely, we show that for any k,ε >0 and given a DAG G with N nodes and constant indegree, it is Unique Games hard to distinguish between the case that G is (e_1, d_1)-reducible with e_1=N^{1/(1+2 ε)}/k and d_1=k N^{2 ε/(1+2 ε)}, and the case that G is (e_2, d_2)-depth-robust with e_2 = (1-ε)k e_1 and d_2= 0.9 N^{(1+ε)/(1+2 ε)}, which may be of independent interest. Our result generalizes a result of Svensson who proved an analogous result for DAGs with indegree 𝒪(N).« less
  2. The Minimum Circuit Size Problem (MCSP) has been the focus of intense study recently; MCSP is hard for SZK under rather powerful reductions, and is provably not hard under "local" reductions computable in TIME(n^0.49) . The question of whether MCSP is NP-hard (or indeed, hard even for small subclasses of P) under some of the more familiar notions of reducibility (such as many-one or Turing reductions computable in polynomial time or in AC^0) is closely related to many of the longstanding open questions in complexity theory. All prior hardness results for MCSP hold also for computing somewhat weak approximations to the circuit complexity of a function. Some of these results were proved by exploiting a connection to a notion of time-bounded Kolmogorov complexity (KT) and the corresponding decision problem (MKTP). More recently, a new approach for proving improved hardness results for MKTP was developed, but this approach establishes only hardness of extremely good approximations of the form 1+o(1), and these improved hardness results are not yet known to hold for MCSP. In particular, it is known that MKTP is hard for the complexity class DET under nonuniform AC^0 m-reductions, implying MKTP is not in AC^0[p] for any prime p. Itmore »was still open if similar circuit lower bounds hold for MCSP. One possible avenue for proving a similar hardness result for MCSP would be to improve the hardness of approximation for MKTP beyond 1 + o(1) to omega(1), as KT-complexity and circuit size are polynomially-related. In this paper, we show that this approach cannot succeed. More speci cally, we prove that PARITY does not reduce to the problem of computing superlinear approximations to KT-complexity or circuit size via AC^0-Turing reductions that make O(1) queries. This is signi cant, since approximating any set in P/poly AC^0-reduces to just one query of a much worse approximation of circuit size or KT-complexity. For weaker approximations, we also prove non-hardness under more powerful reductions. Our non-hardness results are unconditional, in contrast to conditional results presented in earlier work (for more powerful reductions, but for much worse approximations). This highlights obstacles that would have to be overcome by any proof that MKTP or MCSP is hard for NP under AC^0 reductions. It may also be a step toward con rming a conjecture of Murray and Williams, that MCSP is not NP-complete under logtime-uniform AC0 m-reductions.« less
  3. Abstract We study the low-rank phase retrieval problem, where our goal is to recover a $d_1\times d_2$ low-rank matrix from a series of phaseless linear measurements. This is a fourth-order inverse problem, as we are trying to recover factors of a matrix that have been observed, indirectly, through some quadratic measurements. We propose a solution to this problem using the recently introduced technique of anchored regression. This approach uses two different types of convex relaxations: we replace the quadratic equality constraints for the phaseless measurements by a search over a polytope and enforce the rank constraint through nuclear norm regularization. The result is a convex program in the space of $d_1 \times d_2$ matrices. We analyze two specific scenarios. In the first, the target matrix is rank-$1$, and the observations are structured to correspond to a phaseless blind deconvolution. In the second, the target matrix has general rank, and we observe the magnitudes of the inner products against a series of independent Gaussian random matrices. In each of these problems, we show that anchored regression returns an accurate estimate from a near-optimal number of measurements given that we have access to an anchor matrix of sufficient quality. We also showmore »how to create such an anchor in the phaseless blind deconvolution problem from an optimal number of measurements and present a partial result in this direction for the general rank problem.« less
  4. Abstract We consider a natural generalization of classical scheduling problems to a setting in which using a time unit for processing a job causes some time-dependent cost, the time-of-use tariff, which must be paid in addition to the standard scheduling cost. We focus on preemptive single-machine scheduling and two classical scheduling cost functions, the sum of (weighted) completion times and the maximum completion time, that is, the makespan. While these problems are easy to solve in the classical scheduling setting, they are considerably more complex when time-of-use tariffs must be considered. We contribute optimal polynomial-time algorithms and best possible approximation algorithms. For the problem of minimizing the total (weighted) completion time on a single machine, we present a polynomial-time algorithm that computes for any given sequence of jobs an optimal schedule, i.e., the optimal set of time slots to be used for preemptively scheduling jobs according to the given sequence. This result is based on dynamic programming using a subtle analysis of the structure of optimal solutions and a potential function argument. With this algorithm, we solve the unweighted problem optimally in polynomial time. For the more general problem, in which jobs may have individual weights, we develop a polynomial-timemore »approximation scheme (PTAS) based on a dual scheduling approach introduced for scheduling on a machine of varying speed. As the weighted problem is strongly NP-hard, our PTAS is the best possible approximation we can hope for. For preemptive scheduling to minimize the makespan, we show that there is a comparably simple optimal algorithm with polynomial running time. This is true even in a certain generalized model with unrelated machines.« less
  5. We present the first all-optical network, Baldur, to enable power-efficient and high-speed communications in future exascale computing systems. The essence of Baldur is its ability to perform packet routing on-the-fly in the optical domain using an emerging technology called the transistor laser (TL), which presents interesting opportunities and challenges at the system level. Optical packet switching readily eliminates many inefficiencies associated with the crossings between optical and electrical domains. However, TL gates consume high power at the current technology node, which makes TL-based buffering and optical clock recovery impractical. Consequently, we must adopt novel (bufferless and clock-less) architecture and design approaches that are substantially different from those used in current networks. At the architecture level, we support a bufferless design by turning to techniques that have fallen out of favor for current networks. Baldur uses a low-radix, multi-stage network with a simple routing algorithm that drops packets to handle congestion, and we further incorporate path multiplicity and randomness to minimize packet drops. This design also minimizes the number of TL gates needed in each switch. At the logic design level, a non-conventional, length-based data encoding scheme is used to eliminate the need for clock recovery. We thoroughly validate and evaluatemore »Baldur using a circuit simulator and a network simulator. Our results show that Baldur achieves up to 3,000X lower average latency while consuming 3.2X-26.4X less power than various state-of-the art networks under a wide variety of traffic patterns and real workloads, for the scale of 1,024 server nodes. Baldur is also highly scalable, since its power per node stays relatively constant as we increase the network size to over 1 million server nodes, which corresponds to 14.6X-31.0X power improvements compared to state-of-the-art networks at this scale.« less