Abstract The Rocky Mountain Biological Laboratory (RMBL; Colorado, USA) is the site for many research projects spanning decades, taxa, and research fields from ecology to evolutionary biology to hydrology and beyond. Climate is the focus of much of this work and provides important context for the rest. There are five major sources of data on climate in the RMBL vicinity, each with unique variables, formats, and temporal coverage. These data sources include (1) RMBL resident billy barr, (2) the National Oceanic and Atmospheric Administration (NOAA), (3) the United States Geological Survey (USGS), (4) the United States Department of Agriculture (USDA), and (5) Oregon State University's PRISM Climate Group. Both the NOAA and the USGS have automated meteorological stations in Crested Butte, CO, ~10 km from the RMBL, while the USDA has an automated meteorological station on Snodgrass Mountain, ~2.5 km from the RMBL. Each of these data sets has unique spatial and temporal coverage and formats. Despite the wealth of work on climate‐related questions using data from the RMBL, previous researchers have each had to access and format their own climate records, make decisions about handling missing data, and recreate data summaries. Here we provide a single curated climate data set of daily observations covering the years 1975–2022 that blends information from all five sources and includes annotated scripts documenting decisions for handling data. These synthesized climate data will facilitate future research, reduce duplication of effort, and increase our ability to compare results across studies. The data set includes information on precipitation (water and snow), snowmelt date, temperature, wind speed, soil moisture and temperature, and stream flows, all publicly available from a combination of sources. In addition to the formatted raw data, we provide several new variables that are commonly used in ecological analyses, including growing degree days, growing season length, a cold severity index, hard frost days, an index of El Niño‐Southern Oscillation, and aridity (standardized precipitation evapotranspiration index). These new variables are calculated from the daily weather records. As appropriate, data are also presented as minima, maxima, means, residuals, and cumulative measures for various time scales including days, months, seasons, and years. The RMBL is a global research hub. Scientists on site at the RMBL come from many countries and produce about 50 peer‐reviewed publications each year. Researchers from around the world also routinely use data from the RMBL for synthetic work, and educators around the United States use data from the RMBL for teaching modules. This curated and combined data set will be useful to a wide audience. Along with the synthesized combined data set we include the raw data and the R code for cleaning the raw data and creating the monthly and yearly data sets, which facilitate adding additional years or data using the same standardized protocols. No copyright or proprietary restrictions are associated with using this data set; please cite this data paper when the data are used in publications or scientific events.
more »
« less
Nickel( ii )-methyl complexes adopting unusual seesaw geometries
We report four-coordinate nickel( ii )-methyl complexes of tris-carbene borate ligands which adopt rare seesaw geometries. Experimental and computational results suggest the structural distortion from threefold symmetry results from a combination of electronic stabilization of the singlet state, strong field donors, and constrained angles from the chelating ligand.
more »
« less
- PAR ID:
- 10167956
- Date Published:
- Journal Name:
- Chemical Communications
- ISSN:
- 1359-7345
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT DNA metabarcoding of zooplankton biodiversity is used increasingly for monitoring global ocean ecosystems, requiring comparable data from different research laboratories and ocean regions. The MetaZooGene Intercalibration Experiment (MZG‐ICE) was designed to examine1 and analyse patterns of variation of DNA sequence data resulting from multi‐gene metabarcoding of 10 zooplankton samples carried out by 10 research groups affiliated with the Scientific Committee for Ocean Research (SCOR). Aliquots of DNA extracted from the 10 zooplankton samples were distributed to MZG‐ICE groups for metabarcoding of four gene regions: V1‐V2, V4 and V9 of nuclear 18S rRNA and mitochondrial COI. Molecular protocols and procedures were recommended; substitutions were allowed as necessary. Resulting data were uploaded to a common repository for centralised statistics and bioinformatics. Based on proportional sequence numbers for abundant phyla, overall patterns of variation were consistent across many—but not all—MZG‐ICE groups. V9 showed highest similarity, followed (in order) by V4, V1‐V2, and COI. Outlier data were hypothesised to result from the use of different PCR protocols and sequencing platforms, and possible contamination. MZG‐ICE results indicated that DNA metabarcoding data from different laboratories and research groups can provide reliable, accurate and valid descriptions of biodiversity of zooplankton throughout the ocean. Recommendations included: pre‐screening QA/QC of raw data, detailed records for laboratory protocols, reagents, and instrumentation, and centralised bioinformatics and multivariate statistics. In the absence of universal agreement on standardised protocols or best practices, intercalibration is the best way forward toward validation of DNA metabarcoding of zooplankton diversity for global ocean monitoring.more » « less
-
Abstract Hemoglobin III (HbIII) is one of the two oxygen reactive hemoproteins present in the bivalve,Lucina pectinata. The clam inhabits a sulfur‐rich environment and HbIII is the only hemoprotein present in the system which does not yet have a structure described elsewhere. It is known that HbIII exists as a heterodimer with hemoglobin II (HbII) to generate the stable Oxy(HbII‐HbIII) complex but it remains unknown if HbIII can form a homodimeric species. Here, a new chromatographic methodology to separate OxyHbIII from the HbII‐HbIII dimer has been developed, employing a fast performance liquid chromatography and ionic exchange chromatography column. The nature of OxyHbIII in solution at concentrations from 1.6 mg/mL to 20.4 mg/mL was studied using small angle X‐ray scattering (SAXS). The results show that at all concentrations, the Oxy(HbIII‐HbIII) dimer dominates in solution. However, as the concentration increases to nonphysiological values, 20.4 mg/mL, HbIII forms a 30% tetrameric fraction. Thus, there is a direct relationship between the Oxy(HbIII‐HbIII) oligomeric form and hemoglobin concentration. We suggest it is likely that the OxyHbIII dimer contributes to active oxygen transport in tissues ofL pectinata, where the Oxy(HbII‐HbIII) complex is not present.more » « less
-
Abstract The efficient isolation of viable and intact circulating tumor cells (CTCs) from blood is critical for the genetic analysis of cancer cells, prediction of cancer progression, development of drugs, and evaluation of therapeutic treatments. While conventional cell separation devices utilize the size difference between CTCs and other blood cells, they fail to separate CTCs from white blood cells (WBCs) due to significant size overlap. To overcome this issue, we present a novel approach that combines curved contraction–expansion (CE) channels with dielectrophoresis (DEP) and inertial microfluidics to isolate CTCs from WBCs regardless of size overlap. This label‐free and continuous separation method utilizes dielectric properties and size variation of cells for the separation of CTCs from WBCs. The results demonstrate that the proposed hybrid microfluidic channel can effectively isolate A549 CTCs from WBCs regardless of their size with a throughput of 300 μL/min, achieving a high separation distance of 233.4 μm at an applied voltage of 50 Vp–p. The proposed method allows for the modification of cell migration characteristics by controlling the number of CE sections of the channel, applied voltage, applied frequency, and flow rate. With its unique features of a single‐stage separation, simple design, and tunability, the proposed method provides a promising alternative to the existing label‐free cell separation techniques and may have a wide range of applications in biomedicine.more » « less
-
ABSTRACT Formation of alginate‐based interpenetrating networks and addition of nanoparticles into these gels are widely used strategies to enhance the mechanical properties of alginate gels used for delivery and biomedical applications. Our previous work demonstrated that alginate‐clay nanocomposite hydrogels containing poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) (PEO–PPO–PEO) copolymers exhibited significant enhancement of elasticity and temperature‐dependent rheology. However, the behavior of PEO–PPO–PEO copolymers within an alginate network remains unclear. In this study, we use small‐angle neutron scattering (SANS) to investigate the interactions between the alginate network and PEO–PPO–PEO triblock chains. Our fitting results revealed that the triblock chains can form micelles integrated into the alginate gel “egg box” structure at higher temperatures. The presence of the alginate network influences the formation of PEO–PPO–PEO micelles in our gels, leading to elongated ellipsoidal micelles rather than spherical micelles. Interestingly, as the temperature increased, these micelles did not expand in all three dimensions, as observed for pure PEO–PPO–PEO solutions. Rather, the total size increased only in one direction while remaining the same in the other two directions, suggesting that the alginate networks restrict the growth of micelles. Furthermore, we did not observe the distinct higher‐order peaks that are typical of cubic PEO–PPO–PEO hydrogels; rather, relatively weak secondary peaks were observed. These results demonstrate that the presence of the alginate network significantly influences micelle formation and assembly in composite hydrogel systems.more » « less
An official website of the United States government

