skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: MetaZooGene Intercalibration Experiment ( MZG ‐ ICE ): Metabarcoding Marine Zooplankton Diversity of the Global Ocean
ABSTRACT DNA metabarcoding of zooplankton biodiversity is used increasingly for monitoring global ocean ecosystems, requiring comparable data from different research laboratories and ocean regions. The MetaZooGene Intercalibration Experiment (MZG‐ICE) was designed to examine1 and analyse patterns of variation of DNA sequence data resulting from multi‐gene metabarcoding of 10 zooplankton samples carried out by 10 research groups affiliated with the Scientific Committee for Ocean Research (SCOR). Aliquots of DNA extracted from the 10 zooplankton samples were distributed to MZG‐ICE groups for metabarcoding of four gene regions: V1‐V2, V4 and V9 of nuclear 18S rRNA and mitochondrial COI. Molecular protocols and procedures were recommended; substitutions were allowed as necessary. Resulting data were uploaded to a common repository for centralised statistics and bioinformatics. Based on proportional sequence numbers for abundant phyla, overall patterns of variation were consistent across many—but not all—MZG‐ICE groups. V9 showed highest similarity, followed (in order) by V4, V1‐V2, and COI. Outlier data were hypothesised to result from the use of different PCR protocols and sequencing platforms, and possible contamination. MZG‐ICE results indicated that DNA metabarcoding data from different laboratories and research groups can provide reliable, accurate and valid descriptions of biodiversity of zooplankton throughout the ocean. Recommendations included: pre‐screening QA/QC of raw data, detailed records for laboratory protocols, reagents, and instrumentation, and centralised bioinformatics and multivariate statistics. In the absence of universal agreement on standardised protocols or best practices, intercalibration is the best way forward toward validation of DNA metabarcoding of zooplankton diversity for global ocean monitoring.  more » « less
Award ID(s):
1840868
PAR ID:
10658905
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  more » ;  ;  ;  ;   « less
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Molecular Ecology Resources
Volume:
26
Issue:
1
ISSN:
1755-098X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Characterization of species diversity of zooplankton is key to understanding, assessing, and predicting the function and future of pelagic ecosystems throughout the global ocean. The marine zooplankton assemblage, including only metazoans, is highly diverse and taxonomically complex, with an estimated ~28,000 species of 41 major taxonomic groups. This review provides a comprehensive summary of DNA sequences for the barcode region of mitochondrial cytochrome oxidase I (COI) for identified specimens. The foundation of this summary is the MetaZooGene Barcode Atlas and Database (MZGdb), a new open-access data and metadata portal that is linked to NCBI GenBank and BOLD data repositories. The MZGdb provides enhanced quality control and tools for assembling COI reference sequence databases that are specific to selected taxonomic groups and/or ocean regions, with associated metadata (e.g., collection georeferencing, verification of species identification, molecular protocols), and tools for statistical analysis, mapping, and visualization. To date, over 150,000 COI sequences for ~ 5600 described species of marine metazoan plankton (including holo- and meroplankton) are available via the MZGdb portal. This review uses the MZGdb as a resource for summaries of COI barcode data and metadata for important taxonomic groups of marine zooplankton and selected regions, including the North Atlantic, Arctic, North Pacific, and Southern Oceans. The MZGdb is designed to provide a foundation for analysis of species diversity of marine zooplankton based on DNA barcoding and metabarcoding for assessment of marine ecosystems and rapid detection of the impacts of climate change. 
    more » « less
  2. DNA metabarcoding and morphological taxonomic (microscopic) analysis of the gut contents was used to examine diet diversity of seven species of fishes collected from mesopelagic depths (200-1000 m) in the NW Atlantic Ocean Slope Water during Summer 2018 and 2019. Metabarcoding used two gene regions: V9 hypervariable region of nuclear 18S rRNA and mitochondrial cytochrome oxidase I (COI). V9 sequences were classified into 14 invertebrate prey groups, excluding fish due to predator swamping. Ecological network analysis was used to evaluate relative strengths of predator-prey linkages. Multivariate statistical analysis revealed consistently distinct diets of four fish species in 2018 and/or 2019:Argyropelecus aculeatus, Chauliodus sloani, Hygophum hygomii, andSigmops elongatus. Three other species analyzed (Malacosteus niger, Nemichthys scolopaceus, andScopelogadus beanii) showed more variability between sampling years. COI sequences were classified into eight invertebrate prey groups, within which prey species were detected and identified. Considering all predator species together, a total of 77 prey species were detected with a minimum of 1,000 COI sequences, including 22 copepods, 18 euphausiids, and 7 amphipods. Morphological prey counts were classified into seven taxonomic groups, including a gelatinous group comprised of soft-bodied organisms. The ocean twilight zone or is home to exceptional diversity and biomass of marine fish, which are key players in deep sea food webs. This study used integrative morphological-molecular analysis to provide new insights into trophic relationships and sources of productivity for mesopelagic fishes, including identification of key prey species, recognition of the importance of gelatinous prey, and characterization of differences in diet among fish predators in the NW Atlantic Slope Water. 
    more » « less
  3. Marine zooplankton are rapid-responders and useful indicators of environmental variability and climate change impacts on pelagic ecosystems on time scales ranging from seasons to years to decades. The systematic complexity and taxonomic diversity of the zooplankton assemblage has presented significant challenges for routine morphological (microscopic) identification of species in samples collected during ecosystem monitoring and fisheries management surveys. Metabarcoding using the mitochondrial Cytochrome Oxidase I (COI) gene region has shown promise for detecting and identifying species of some – but not all – taxonomic groups in samples of marine zooplankton. This study examined species diversity of zooplankton on the Northwest Atlantic Continental Shelf using 27 samples collected in 2002-2012 from the Gulf of Maine, Georges Bank, and Mid-Atlantic Bight during Ecosystem Monitoring (EcoMon) Surveys by the NOAA NMFS Northeast Fisheries Science Center. COI metabarcodes were identified using the MetaZooGene Barcode Atlas and Database ( https://metazoogene.org/MZGdb ) specific to the North Atlantic Ocean. A total of 181 species across 23 taxonomic groups were detected, including a number of sibling and cryptic species that were not discriminated by morphological taxonomic analysis of EcoMon samples. In all, 67 species of 15 taxonomic groups had ≥ 50 COI sequences; 23 species had >1,000 COI sequences. Comparative analysis of molecular and morphological data showed significant correlations between COI sequence numbers and microscopic counts for 5 of 6 taxonomic groups and for 5 of 7 species with >1,000 COI sequences for which both types of data were available. Multivariate statistical analysis showed clustering of samples within each region based on both COI sequence numbers and EcoMon counts, although differences among the three regions were not statistically significant. The results demonstrate the power and potential of COI metabarcoding for identification of species of metazoan zooplankton in the context of ecosystem monitoring. 
    more » « less
  4. Abstract The effects of environmental change on zooplankton communities, and more broadly, pelagic ecosystems are difficult to predict due to the high diversity of ecological strategies and complex interspecific interactions within the zooplankton. Trait‐based approaches can define zooplankton functional groups with distinct responses to environmental change. Analyses across multiple mesozooplankton groups can help identify key organizing traits. Here, we use the pronounced cross‐shore environmental gradient within the California Current Ecosystem in a space‐for‐time substitution to test potential effects of ocean warming and increased stratification on zooplankton communities. Along a horizontal gradient in sea‐surface temperature, water column stratification, and light attenuation, we test whether there are changes in zooplankton species composition, trait composition, and vertical habitat use. We employ DNA metabarcoding at two loci (18S‐V4 and COI) and digital ZooScan imaging of zooplankton sampled in a Lagrangian manner. We find that vertical distributions of many mesozooplankton taxa shift to deeper depths in the cross‐shore direction, and light attenuation is the strongest predictor of magnitude of change. Vertical habitat shifts vary among functional groups, with changes in vertical distribution most pronounced among carnivorous taxa. Herbivorous taxa remain associated with the chlorophyll maximum, especially in clear offshore waters. Our results suggest that increased stratification of this ocean region will lead to deeper depths occupied by some components of epipelagic mesozooplankton communities, and may result in zooplankton communities with more specialized feeding strategies, increased egg brooding, and more asexual reproduction. 
    more » « less
  5. Abstract. Eastern boundary upwelling systems (EBUS) contribute a disproportionatefraction of the global fish catch relative to their size and are especiallysusceptible to global environmental change. Here we present the evolution ofcommunities over 50 d in an in situ mesocosm 6 km offshore of Callao, Peru, andin the nearby unenclosed coastal Pacific Ocean. The communities weremonitored using multi-marker environmental DNA (eDNA) metabarcoding and flowcytometry. DNA extracted from weekly water samples were subjected toamplicon sequencing for four genetic loci: (1) the V1–V2 region of the 16SrRNA gene for photosynthetic eukaryotes (via their chloroplasts) andbacteria; (2) the V9 region of the 18S rRNA gene for exploration ofeukaryotes but targeting phytoplankton; (3) cytochrome oxidase I (COI) forexploration of eukaryotic taxa but targeting invertebrates; and (4) the 12SrRNA gene, targeting vertebrates. The multi-marker approach showed adivergence of communities (from microbes to fish) between the mesocosm andthe unenclosed ocean. Together with the environmental information, thegenetic data furthered our mechanistic understanding of the processes thatare shaping EBUS communities in a changing ocean. The unenclosed oceanexperienced significant variability over the course of the 50 d experiment,with temporal shifts in community composition, but remained dominated byorganisms that are characteristic of high-nutrient upwelling conditions(e.g., diatoms, copepods, anchovies). A large directional change was found inthe mesocosm community. The mesocosm community that developed wascharacteristic of upwelling regions when upwelling relaxes and watersstratify (e.g., dinoflagellates, nanoflagellates). The selection ofdinoflagellates under the salinity-driven experimentally stratifiedconditions in the mesocosm, as well as the warm conditions brought about bythe coastal El Niño, may be an indication of how EBUS will respond underthe global environmental changes (i.e., increases in surface temperature andfreshwater input, leading to increased stratification) forecast by the IPCC. 
    more » « less