skip to main content


Title: Prediction of Solar Radiation Based on Spatial and Temporal Embeddings for Solar Generation Forecast
Abstract A novel method for real-time solar generation forecast using weather data, while exploiting both spatial and temporal structural dependencies is proposed. The network observed over time is projected to a lower-dimensional representation where a variety of weather measurements are used to train a structured regression model while weather forecast is used at the inference stage. Experiments were conducted at 288 locations in the San Antonio, TX area on obtained from the National Solar Radiation Database. The model predicts solar irradiance with a good accuracy (R2 0.91 for the summer, 0.85 for the winter, and 0.89 for the global model). The best accuracy was obtained by the Random Forest Regressor. Multiple experiments were conducted to characterize influence of missing data and different time horizons providing evidence that the new algorithm is robust for data missing not only completely at random but also when the mechanism is spatial, and temporal.  more » « less
Award ID(s):
1636772
NSF-PAR ID:
10168026
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the Hawaii International Conference on System Sciences
ISSN:
0073-1129
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Solar flares have been linked to some of the most significant space weather hazards at Earth. These hazards, including radio blackouts and energetic particle events, can start just minutes after the flare onset. Therefore, it is of great importance to identify and predict flare events. In this paper we introduce the Detection and EUV Flare Tracking (DEFT) tool, which allows us to identify flare signatures and their precursors using high spatial and temporal resolution extreme-ultraviolet (EUV) solar observations. The unique advantage of DEFT is its ability to identify small but significant EUV intensity changes that may lead to solar eruptions. Furthermore, the tool can identify the location of the disturbances and distinguish events occurring at the same time in multiple locations. The algorithm analyzes high temporal cadence observations obtained from the Solar Ultraviolet Imager instrument aboard the GOES-R satellite. In a study of 61 flares of various magnitudes observed in 2017, the “main” EUV flare signatures (those closest in time to the X-ray start time) were identified on average 6 minutes early. The “precursor” EUV signatures (second-closest EUV signatures to the X-ray start time) appeared on average 14 minutes early. Our next goal is to develop an operational version of DEFT and to simulate and test its real-time use. A fully operational DEFT has the potential to significantly improve space weather forecast times. 
    more » « less
  2. null (Ed.)
    Urban flooding is a major natural disaster that poses a serious threat to the urban environment. It is highly demanded that the flood extent can be mapped in near real-time for disaster rescue and relief missions, reconstruction efforts, and financial loss evaluation. Many efforts have been taken to identify the flooding zones with remote sensing data and image processing techniques. Unfortunately, the near real-time production of accurate flood maps over impacted urban areas has not been well investigated due to three major issues. (1) Satellite imagery with high spatial resolution over urban areas usually has nonhomogeneous background due to different types of objects such as buildings, moving vehicles, and road networks. As such, classical machine learning approaches hardly can model the spatial relationship between sample pixels in the flooding area. (2) Handcrafted features associated with the data are usually required as input for conventional flood mapping models, which may not be able to fully utilize the underlying patterns of a large number of available data. (3) High-resolution optical imagery often has varied pixel digital numbers (DNs) for the same ground objects as a result of highly inconsistent illumination conditions during a flood. Accordingly, traditional methods of flood mapping have major limitations in generalization based on testing data. To address the aforementioned issues in urban flood mapping, we developed a patch similarity convolutional neural network (PSNet) using satellite multispectral surface reflectance imagery before and after flooding with a spatial resolution of 3 meters. We used spectral reflectance instead of raw pixel DNs so that the influence of inconsistent illumination caused by varied weather conditions at the time of data collection can be greatly reduced. Such consistent spectral reflectance data also enhance the generalization capability of the proposed model. Experiments on the high resolution imagery before and after the urban flooding events (i.e., the 2017 Hurricane Harvey and the 2018 Hurricane Florence) showed that the developed PSNet can produce urban flood maps with consistently high precision, recall, F1 score, and overall accuracy compared with baseline classification models including support vector machine, decision tree, random forest, and AdaBoost, which were often poor in either precision or recall. The study paves the way to fuse bi-temporal remote sensing images for near real-time precision damage mapping associated with other types of natural hazards (e.g., wildfires and earthquakes). 
    more » « less
  3. For farmers, policymakers, and government agencies, it is critical to accurately define agricultural crop phenology and its spatial-temporal variability. At the moment, two approaches are utilized to report crop phenology. On one hand, land surface phenology provides information about the overall trend, whereas weekly reports from USDA-NASS provide information about the development of particular crops at the regional level. High-cadence earth observations might help to improve the accuracy of these estimations and bring more precise crop phenology classifications closer to what farmers demand. The second component of the proposed solution requires the use of robust classifiers (e.g., random forest, RF) capable of successfully managing large data sets. To evaluate this solution, this study compared the output of a RF classifier model using weather, two different satellite sources (Planet Fusion; PF and Sentinel-2; S-2), and ground truth data to improve maize (Zea mays L.) crop phenology classification using two regions of Kansas (Southwest and Central) as a testbed during the 2017 growing season. Our findings suggests that high temporal resolution (PF) data can significantly improve crop classification metrics (f1-score = 0.94) relative to S-2 (f1-score = 0.86). Additionally, a decline in the f1-score between 0.74 and 0.60 was obtained when we assessed the ability of S-2 to extend the temporal forecast for crop phenology. This research highlights the critical nature of very high temporal resolution (daily) earth observation data for crop monitoring and decision making in agriculture. 
    more » « less
  4. null (Ed.)
    The falling cost of solar energy deployments has resulted in ever-increasing growth in solar capacity worldwide. The primary challenge posed by increasing grid-tied solar capacity is handling its variability due to continuously changing conditions. Thus, prior work has developed highly sophisticated models to estimate and forecast solar power output based on many characteristics, including location, elevation, time, weather, shading, module type, wiring, etc. These models are highly accurate for estimating solar power, especially over long periods, for sites at low latitudes, i.e., closer to the equator. However, models for sites at higher latitudes are less accurate due to the effect of snow on solar output, since even a small amount of snow can cover panels and reduce power to zero. Improving the accuracy of these models for annual solar output by even 2--3% is significant, as power translates directly into revenue, which compounds over the system's lifetime. Thus, if a site produces 2--3% less power on average per year due to snow than a model predicts, it can mean the difference between a positive or negative return-on-investment. To address the problem, we develop DeepSnow, a data-driven approach that models the effect of snow on solar power generation. DeepSnow integrates with existing solar modeling frameworks, and uses publicly available snow data to learn its effect on solar generation. We leverage deep learning to quantify the effect of different snow variables on solar power using 4 million hourly readings from 40 solar sites. We evaluate our approach on 10 solar sites, and show that it yields a higher accuracy than the current approach for modeling snow effects used by the U.S. Department of Energy's System Advisor Model (SAM), a popular solar modeling framework. 
    more » « less
  5. Abstract

    Accurate and timely storm surge forecasts are essential during tropical cyclone events in order to assess the magnitude and location of the impacts. Coupled ocean‐atmosphere dynamical models provide accurate measures of storm surge but remain too computationally expensive to run for real‐time forecasting purposes. Therefore, it is common to utilize a parametric vortex model, implemented within a hydrodynamic model, which decreases computational time at the expense of forecast accuracy. Recently, data‐driven neural networks are being implemented as an alternative due to their combined efficiency and high accuracy. This work seeks to examine how an artificial neural network (ANN) can be used to make accurate storm surge predictions, and explores the added value of using a recurrent neural network (RNN). In particular, it is concerned with determining the parameters needed to successfully implement a neural network model for the Mid‐Atlantic Bight region. The neural network models were trained with modeled data resulting from coupling of the Hybrid Weather Research and Forecasting cyclone model (HWCM) and the Advanced Circulation Model. An ensemble of synthetic, but physically plausible, cyclones were simulated using the HWCM and used as input for the hydrodynamic model. Tests of the ANN were conducted to investigate the optimal lead‐time configuration of the input data and the neural network architecture needed to minimize storm surge forecast errors. Results highlight the accuracy of the ANN in forecasting moderate storm surge levels, while indicating a deficiency in capturing the magnitude of the peak values, which is improved in the implementation of the RNN.

     
    more » « less