skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: What Is It You Really Want of Me? Generalized Reward Learning with Biased Beliefs about Domain Dynamics
Reward learning as a method for inferring human intent and preferences has been studied extensively. Prior approaches make an implicit assumption that the human maintains a correct belief about the robot's domain dynamics. However, this may not always hold since the human's belief may be biased, which can ultimately lead to a misguided estimation of the human's intent and preferences, which is often derived from human feedback on the robot's behaviors. In this paper, we remove this restrictive assumption by considering that the human may have an inaccurate understanding of the robot. We propose a method called Generalized Reward Learning with biased beliefs about domain dynamics (GeReL) to infer both the reward function and human's belief about the robot in a Bayesian setting based on human ratings. Due to the complex forms of the posteriors, we formulate it as a variational inference problem to infer the posteriors of the parameters that govern the reward function and human's belief about the robot simultaneously. We evaluate our method in a simulated domain and with a user study where the user has a bias based on the robot's appearances. The results show that our method can recover the true human preferences while subject to such biased beliefs, in contrast to prior approaches that could have misinterpreted them completely.  more » « less
Award ID(s):
1844524
PAR ID:
10168080
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the AAAI Conference on Artificial Intelligence
Volume:
34
Issue:
03
ISSN:
2159-5399
Page Range / eLocation ID:
2485 to 2492
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Robots can learn to imitate humans by inferring what the human is optimizing for. One common framework for this is Bayesian reward learning, where the robot treats the human's demonstrations and corrections as observations of their underlying reward function. Unfortunately, this inference is doubly-intractable: the robot must reason over all the trajectories the person could have provided and all the rewards the person could have in mind. Prior work uses existing robotic tools to approximate this normalizer. In this letter, we group previous approaches into three fundamental classes and analyze the theoretical pros and cons of their approach. We then leverage recent research from the statistics community to introduce Double MH reward learning, a Monte Carlo method for asymptotically learning the human's reward in continuous spaces. We extend Double MH to conditionally independent settings (where each human correction is viewed as completely separate) and conditionally dependent environments (where the human's current correction may build on previous inputs). Across simulations and user studies, our proposed approach infers the human's reward parameters more accurately than the alternate approximations when learning from either demonstrations or corrections. 
    more » « less
  2. Humans can leverage physical interaction to teach robot arms. This physical interaction takes multiple forms depending on the task, the user, and what the robot has learned so far. State-of-the-art approaches focus on learning from a single modality, or combine some interaction types. Some methods do so by assuming that the robot has prior information about the features of the task and the reward structure. By contrast, in this article, we introduce an algorithmic formalism that unites learning from demonstrations, corrections, and preferences. Our approach makes no assumptions about the tasks the human wants to teach the robot; instead, we learn a reward model from scratch by comparing the human’s input to nearby alternatives, i.e., trajectories close to the human’s feedback. We first derive a loss function that trains an ensemble of reward models to match the human’s demonstrations, corrections, and preferences. The type and order of feedback is up to the human teacher: We enable the robot to collect this feedback passively or actively. We then apply constrained optimization to convert our learned reward into a desired robot trajectory. Through simulations and a user study, we demonstrate that our proposed approach more accurately learns manipulation tasks from physical human interaction than existing baselines, particularly when the robot is faced with new or unexpected objectives. Videos of our user study are available at https://youtu.be/FSUJsTYvEKU 
    more » « less
  3. Ensuring that AI systems do what we, as humans, actually want them to do, is one of the biggest open research challenges in AI alignment and safety. My research seeks to directly address this challenge by enabling AI systems to interact with humans to learn aligned and robust behaviors. The way in which robots and other AI systems behave is often the result of optimizing a reward function. However, manually designing good reward functions is highly challenging and error prone, even for domain experts. Consider trying to write down a reward function that describes good driving behavior or how you like your bed made in the morning. While reward functions for these tasks are difficult to manually specify, human feedback in the form of demonstrations or preferences are often much easier to obtain. However, human data is often difficult to interpret, due to ambiguity and noise. Thus, it is critical that AI systems take into account epistemic uncertainty over the human's true intent. My talk will give an overview of my lab's progress along the following fundamental research areas: (1) efficiently maintaining uncertainty over human intent, (2) directly optimizing behavior to be robust to uncertainty over human intent, and (3) actively querying for additional human input to reduce uncertainty over human intent. 
    more » « less
  4. Reward functions are a common way to specify the objective of a robot. As designing reward functions can be extremely challenging, a more promising approach is to directly learn reward functions from human teachers. Importantly, data from human teachers can be collected either passively or actively in a variety of forms: passive data sources include demonstrations (e.g., kinesthetic guidance), whereas preferences (e.g., comparative rankings) are actively elicited. Prior research has independently applied reward learning to these different data sources. However, there exist many domains where multiple sources are complementary and expressive. Motivated by this general problem, we present a framework to integrate multiple sources of information, which are either passively or actively collected from human users. In particular, we present an algorithm that first utilizes user demonstrations to initialize a belief about the reward function, and then actively probes the user with preference queries to zero-in on their true reward. This algorithm not only enables us combine multiple data sources, but it also informs the robot when it should leverage each type of information. Further, our approach accounts for the human’s ability to provide data: yielding user-friendly preference queries which are also theoretically optimal. Our extensive simulated experiments and user studies on a Fetch mobile manipulator demonstrate the superiority and the usability of our integrated framework. 
    more » « less
  5. Intuitively, obedience -- following the order that a human gives -- seems like a good property for a robot to have. But, we humans are not perfect and we may give orders that are not best aligned to our preferences. We show that when a human is not perfectly rational then a robot that tries to infer and act according to the human's underlying preferences can always perform better than a robot that simply follows the human's literal order. Thus, there is a tradeoff between the obedience of a robot and the value it can attain for its owner. We investigate how this tradeoff is impacted by the way the robot infers the human's preferences, showing that some methods err more on the side of obedience than others. We then analyze how performance degrades when the robot has a misspecified model of the features that the human cares about or the level of rationality of the human. Finally, we study how robots can start detecting such model misspecification. Overall, our work suggests that there might be a middle ground in which robots intelligently decide when to obey human orders, but err on the side of obedience. 
    more » « less