skip to main content


Search for: All records

Award ID contains: 1844524

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
  3. null (Ed.)
  4. null (Ed.)
  5. Reward learning as a method for inferring human intent and preferences has been studied extensively. Prior approaches make an implicit assumption that the human maintains a correct belief about the robot's domain dynamics. However, this may not always hold since the human's belief may be biased, which can ultimately lead to a misguided estimation of the human's intent and preferences, which is often derived from human feedback on the robot's behaviors. In this paper, we remove this restrictive assumption by considering that the human may have an inaccurate understanding of the robot. We propose a method called Generalized Reward Learning with biased beliefs about domain dynamics (GeReL) to infer both the reward function and human's belief about the robot in a Bayesian setting based on human ratings. Due to the complex forms of the posteriors, we formulate it as a variational inference problem to infer the posteriors of the parameters that govern the reward function and human's belief about the robot simultaneously. We evaluate our method in a simulated domain and with a user study where the user has a bias based on the robot's appearances. The results show that our method can recover the true human preferences while subject to such biased beliefs, in contrast to prior approaches that could have misinterpreted them completely. 
    more » « less
  6. null (Ed.)
  7. In order to achieve effective human-AI collaboration, it is necessary for an AI agent to align its behavior with the human's expectations. When the agent generates a task plan without such considerations, it may often result in inexplicable behavior from the human's point of view. This may have serious implications for the human, from increased cognitive load to more serious concerns of safety around the physical agent. In this work, we present an approach to generate explicable behavior by minimizing the distance between the agent's plan and the plan expected by the human. To this end, we learn a mapping between plan distances (distances between expected and agent plans) and human's plan scoring scheme. The plan generation process uses this learned model as a heuristic. We demonstrate the effectiveness of our approach in a delivery robot domain. 
    more » « less