skip to main content

Title: Phase transitions in ε-FeOOH at high pressure and ambient temperature
Abstract Constraining the accommodation, distribution, and circulation of hydrogen in the Earth's interior is vital to our broader understanding of the deep Earth due to the significant influence of hydrogen on the material and rheological properties of minerals. Recently, a great deal of attention has been paid to the high-pressure polymorphs of FeOOH (space groups P21nm and Pnnm). These structures potentially form a hydrogen-bearing solid solution with AlOOH and phase H (MgSiO4H2) that may transport water (OH–) deep into the Earth's lower mantle. Additionally, the pyrite-type polymorph (space group Pa3 of FeOOH), and its potential dehydration have been linked to phenomena as diverse as the introduction of hydrogen into the outer core (Nishi et al. 2017), the formation of ultralow-velocity zones (ULVZs) (Liu et al. 2017), and the Great Oxidation Event (Hu et al. 2016). In this study, the high-pressure evolution of FeOOH was re-evaluated up to ~75 GPa using a combination of synchrotron-based X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and optical absorption spectroscopy. Based on these measurements, we report three principal findings: (1) pressure-induced changes in hydrogen bonding (proton disordering or hydrogen bond symmetrization) occur at substantially lower pressures in ε-FeOOH than previously reported and are unlikely more » to be linked to the high-spin to low-spin transition; (2) ε-FeOOH undergoes a 10% volume collapse coincident with an isostructural Pnnm → Pnnm transition at approximately 45 GPa; and (3) a pressure-induced band gap reduction is observed in FeOOH at pressures consistent with the previously reported spin transition (40 to 50 GPa). « less
Authors:
; ; ; ; ;
Award ID(s):
1725673 1651017
Publication Date:
NSF-PAR ID:
10238811
Journal Name:
American Mineralogist
Volume:
105
Issue:
12
Page Range or eLocation-ID:
1769 to 1777
ISSN:
0003-004X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The high-pressure phases of oxyhydroxides (δ-AlOOH, ε-FeOOH, and their solid solution), candidate components of subducted slabs, have wide stability fields, thus potentially influencing volatile circulation and dynamics in the Earth’s lower mantle. Here, we report the elastic wave velocities of δ-(Al,Fe)OOH (Fe/(Al + Fe) = 0.13, δ-Fe13) to 79 GPa, determined by nuclear resonant inelastic X-ray scattering. At pressures below 20 GPa, a softening of the phonon spectra is observed. With increasing pressure up to the Fe 3+ spin crossover (~ 45 GPa), the Debye sound velocity ( v D ) increases. At higher pressures, the low spin δ-Fe13 is characterized by a pressure-invariantmore »v D . Using the equation of state for the same sample, the shear-, compressional-, and bulk-velocities ( v S , v P , and v Φ ) are calculated and extrapolated to deep mantle conditions. The obtained velocity data show that δ-(Al,Fe)OOH may cause low- v Φ and low- v P anomalies in the shallow lower mantle. At deeper depths, we find that this hydrous phase reproduces the anti-correlation between v S and v Φ reported for the large low seismic velocity provinces, thus serving as a potential seismic signature of hydrous circulation in the lower mantle.« less
  2. Abstract Electronic states of iron in the lower mantle's dominant mineral, (Mg,Fe,Al)(Fe,Al,Si)O3 bridgmanite, control physical properties of the mantle including density, elasticity, and electrical and thermal conductivity. However, the determination of electronic states of iron has been controversial, in part due to different interpretations of Mössbauer spectroscopy results used to identify spin state, valence state, and site occupancy of iron. We applied energy-domain Mössbauer spectroscopy to a set of four bridgmanite samples spanning a wide range of compositions: 10–50% Fe/total cations, 0–25% Al/total cations, 12–100% Fe3+/total Fe. Measurements performed in the diamond-anvil cell at pressures up to 76 GPa belowmore »and above the high to low spin transition in Fe3+ provide a Mössbauer reference library for bridgmanite and demonstrate the effects of pressure and composition on electronic states of iron. Results indicate that although the spin transition in Fe3+ in the bridgmanite B-site occurs as predicted, it does not strongly affect the observed quadrupole splitting of 1.4 mm/s, and only decreases center shift for this site to 0 mm/s at ~70 GPa. Thus center shift can easily distinguish Fe3+ from Fe2+ at high pressure, which exhibits two distinct Mössbauer sites with center shift ~1 mm/s and quadrupole splitting 2.4–3.1 and 3.9 mm/s at ~70 GPa. Correct quantification of Fe3+/total Fe in bridgmanite is required to constrain the effects of composition and redox states in experimental measurements of seismic properties of bridgmanite. In Fe-rich, mixed-valence bridgmanite at deep-mantle-relevant pressures, up to ~20% of the Fe may be a Fe2.5+ charge transfer component, which should enhance electrical and thermal conductivity in Fe-rich heterogeneities at the base of Earth's mantle.« less
  3. Fe‐Al‐bearing bridgmanite may be the dominant host for ferric iron in Earth's lower mantle. Here we report the synthesis of (Mg0.5Fe3+0.5)(Al0.5Si0.5)O3 bridgmanite (FA50) with the highest Fe3+‐Al3+ coupled substitution known to date. X‐ray diffraction measurements showed that at ambient conditions the FA50 adopted the LiNbO3 structure. Upon compression at room temperature to 18 GPa, it transformed back into the bridgmanite structure, which remained stable up to 102 GPa and 2600 K. Fitting Birch‐Murnaghan equation of state of FA50 bridgmanite yields V 0 = 172.1(4) Å3, K 0 = 229(4) GPa with K 0′ = 4(fixed). The calculated bulk sound velocitymore »of the FA50 bridgmanite is ~7.7% lower than MgSiO3 bridgmanite, mainly because the presence of ferric iron increases the unit‐cell mass by 15.5%. This difference likely represents the upper limit of sound velocity anomaly introduced by Fe3+‐Al3+ substitution. X‐ray emission and synchrotron Mössbauer spectroscopy measurements showed that after laser annealing ~6% of Fe3+ cations exchanged with Al3+ and underwent the high‐spin to low‐spin transition at 59 GPa. The low‐spin proportion of Fe3+ increased gradually with pressure and reached 17‐31% at 80 GPa. Since the cation exchange and spin transition in this Fe3+‐Al3+‐enriched bridgmanite do not cause resolvable unit‐cell volume reduction, and the increase of low‐spin Fe3+ fraction with pressure occurs gradually, the spin transition would not produce a distinct seismic signature in the lower mantle. However, it may influence iron partitioning and isotopic fractionation, thus introducing chemical heterogeneity in the lower mantle.« less
  4. Abstract. The formation of high-pressure oxyhydroxide phases spanned by the components AlOOH–FeOOH–MgSiO2(OH)2 in experiments suggests their capability to retain hydrogen in Earth's lower mantle. Understanding the vibrational properties of high-pressure phases provides the basis for assessing their thermal properties, which are required to compute phase diagrams and physical properties. Vibrational properties can be highly anisotropic, in particular for materials with crystal structures of low symmetry that contain directed structural groups or components. We used nuclear resonant inelastic X-ray scattering (NRIXS) to probe lattice vibrations that involve motions of 57Fe atoms in δ-(Al0.87Fe0.13)OOH single crystals. From the recorded single-crystal NRIXS spectra,more »we calculated projections of the partial phonon density of states along different crystallographic directions. To describe the anisotropy of central vibrational properties, we define and derive tensors for the partial phonon density of states, the Lamb–Mössbauer factor, the mean kinetic energy per vibrational mode, and the mean force constant of 57Fe atoms. We further show how the anisotropy of the Lamb–Mössbauer factor can be translated into anisotropic displacement parameters for 57Fe atoms and relate our findings on vibrational anisotropy to the crystal structure of δ-(Al,Fe)OOH. As a potential application of single-crystal NRIXS at high pressures, we discuss the evaluation of anisotropic thermal stresses in the context of elastic geobarometry for mineral inclusions. Our results on single crystals of δ-(Al,Fe)OOH demonstrate the sensitivity of NRIXS to vibrational anisotropy and provide an in-depth description of the vibrational behavior of Fe3+ cations in a crystal structure that may motivate future applications of NRIXS to study anisotropic vibrational properties of minerals.« less
  5. Abstract This article is dedicated to the occurrence, relevance, and structure of minerals whose formation involves high pressure. This includes minerals that occur in the interior of the Earth as well as minerals that are found in shock-metamorphized meteorites and terrestrial impactites. I discuss the chemical and physical reasons that render the definition of high-pressure minerals meaningful, in distinction from minerals that occur under surface-near conditions on Earth or at high temperatures in space or on Earth. Pressure-induced structural transformations in rock-forming minerals define the basic divisions of Earth's mantle in the upper mantle, transition zone, and lower mantle. Moreover,more »the solubility of minor chemical components in these minerals and the occurrence of accessory phases are influential in mixing and segregating chemical elements in Earth as an evolving planet. Brief descriptions of the currently known high-pressure minerals are presented. Over the past 10 years more high-pressure minerals have been discovered than during the previous 50 years, based on the list of minerals accepted by the IMA. The previously unexpected richness in distinct high-pressure mineral species allows for assessment of differentiation processes in the deep Earth.« less