skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Observations of X-rays from Laboratory Sparks in Air at Atmospheric Pressure under Negative Switching Impulse Voltages
We present observations of X-rays from laboratory sparks created in the air at atmospheric pressure by applying an impulse voltage with long (250 µs) rise-time. X-ray production in 35 and 46 cm gaps for three different electrode configurations was studied. The results demonstrate, for the first time, the production of X-rays in gaps subjected to switching impulses. The low rate of rise of the voltage in switching impulses does not significantly reduce the production of X-rays. Additionally, the timing of the X-ray occurrence suggests the possibility that the mechanism of X-ray production by sparks is related to the collision of streamers of opposite polarity.  more » « less
Award ID(s):
1701484
PAR ID:
10168108
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Atmosphere
Volume:
10
Issue:
4
ISSN:
2073-4433
Page Range / eLocation ID:
169
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Streamers play a key role in the formation and propagation of lightning channels. In nature streamers rarely appear alone. Their ensemble behavior is very complex and challenging to describe. For instance, the intricate dynamics within the streamer zone of negative lightning leaders give rise to space stems, which help advance the stepped-leader. Another example is how the increasing morphological complexity of sprites can lead to higher sprite current and greater energy deposition in the mesosphere. Insights into the complex dynamics of a streamer corona can be obtained from laboratory experiments that allow us to control the conditions of streamer formation. Based on simultaneous nanosecond-temporal-resolution photography, and measurements of voltage, current, and x-ray emissions, we report the characteristics of negative laboratory streamers in 88 kPa of atmosphere. The streamers are produced at peak voltages of 62.2 ± 3.8 kV in a point-to-plane discharge gap of 6 cm. While all discharges were driven to the same peak voltage, the discharges occurred at different stages of the relatively slow voltage rise (177 ns), allowing us to study discharge properties as a function of onset voltage. The onset voltage ranged between 24 and 67 kV, but x-ray emissions were observed to only occur above 53 kV, with x-ray burst energies scaling quadratically with voltage. The average delay between the current pulse and x-ray emission was found to be 3.5 ± 0.5 ns, indicating that runaway electrons are produced during the streamer inception phase or no later than the transition stage, when the inception cloud is breaking into streamer filaments. During this short time span, runaway electrons can traverse the gap, hit the ground plate and produce bremsstrahlung x-ray photons. However, streamers themselves cannot traverse more than 3.5 mm across the gap, which supports the idea that runaway electron production is not associated to streamer connection to the ground electrode. 
    more » « less
  2. Abstract  We present the first results from a 100-day Swift, NICER, and ground-based X-ray–UV–optical reverberation mapping campaign of the Narrow-line Seyfert 1 Mrk 335, when it was in an unprecedented low X-ray flux state. Despite dramatic suppression of the X-ray variability, we still observe UV–optical lags as expected from disk reverberation. Moreover, the UV–optical lags are consistent with archival observations when the X-ray luminosity was >10 times higher. Interestingly, both low- and high-flux states reveal UV–optical lags that are 6–11 times longer than expected from a thin disk. These long lags are often interpreted as due to contamination from the broad line region; however theu-band excess lag (containing the Balmer jump from the diffuse continuum) is less prevalent than in other active galactic nuclei. The Swift campaign showed a low X-ray-to-optical correlation (similar to previous campaigns), but NICER and ground-based monitoring continued for another 2 weeks, during which the optical rose to the highest level of the campaign, followed ∼10 days later by a sharp rise in X-rays. While the low X-ray countrate and relatively large systematic uncertainties in the NICER background make this measurement challenging, if the optical does lead X-rays in this flare, this indicates a departure from the zeroth-order reprocessing picture. If the optical flare is due to an increase in mass accretion rate, this occurs on much shorter than the viscous timescale. Alternatively, the optical could be responding to an intrinsic rise in X-rays that is initially hidden from our line of sight. 
    more » « less
  3. Solar flares are intense bursts of electromagnetic radiation accompanied by energetic particles and hard X-rays. They occur when magnetic flux loops erupt in the solar atmosphere. Solar observations detect energetic particles and hard X-rays but cannot reveal the generating mechanism because the particle acceleration happens at a scale smaller than the observation resolution. Thus, details of the cross-scale physics that explain the generation of energetic particles and hard X-rays remain a mystery. Here, we present observations from a laboratory experiment that simulates solar coronal loop physics. Transient, localized 7.6-keV X-ray bursts and a several-kilovolt voltage spike are observed in braided magnetic flux ropes of a 2-eV plasma when the braid strand radius is choked down to be at the kinetic scale by either magnetohydrodynamic (MHD) kink or magnetic Rayleigh–Taylor instabilities. This sequence of observations reveals a cross-scale coupling from MHD to non-MHD physics that is likely responsible for generating solar energetic particles and X-ray bursts. All the essential components of this mechanism have been separately observed in the solar corona. 
    more » « less
  4. null (Ed.)
    ABSTRACT We present observations of ASASSN-19dj, a nearby tidal disruption event (TDE) discovered in the post-starburst galaxy KUG 0810+227 by the All-Sky Automated Survey for Supernovae (ASAS-SN) at a distance of d ≃ 98 Mpc. We observed ASASSN-19dj from −21 to 392 d relative to peak ultraviolet (UV)/optical emission using high-cadence, multiwavelength spectroscopy and photometry. From the ASAS-SN g-band data, we determine that the TDE began to brighten on 2019 February 6.8 and for the first 16 d the rise was consistent with a flux ∝t2 power law. ASASSN-19dj peaked in the UV/optical on 2019 March 6.5 (MJD = 58548.5) at a bolometric luminosity of L = (6.2 ± 0.2) × 1044 erg s−1. Initially remaining roughly constant in X-rays and slowly fading in the UV/optical, the X-ray flux increased by over an order of magnitude ∼225 d after peak, resulting from the expansion of the X-ray emitting region. The late-time X-ray emission is well fitted by a blackbody with an effective radius of ∼1 × 1012 cm and a temperature of ∼6 × 105 K. The X-ray hardness ratio becomes softer after brightening and then returns to a harder state as the X-rays fade. Analysis of Catalina Real-Time Transient Survey images reveals a nuclear outburst roughly 14.5 yr earlier with a smooth decline and a luminosity of LV ≥ 1.4 × 1043 erg s−1, although the nature of the flare is unknown. ASASSN-19dj occurred in the most extreme post-starburst galaxy yet to host a TDE, with Lick HδA = 7.67 ± 0.17 Å. 
    more » « less
  5. Abstract Determination of the fluxes and spectra of energetic particle precipitation into the Earth's atmosphere is of critical importance for radiation belt dynamics, magnetosphere‐ionosphere coupling, as well as atmospheric chemistry. To improve the assessments of precipitating electrons using X‐ray measurements requires deeper understanding of bremsstrahlung production, transport, and redistribution throughout the atmosphere. Here we use first‐principles Monte Carlo models to explore relativistic electron precipitation events from the perspective of bremsstrahlung X‐rays. The spatial distribution of X‐rays is quantified from the ground level up to satellite altitudes. We then simulate X‐ray images that would be captured using an ideal camera and calculate the energy spectra of X‐rays originating from monoenergetic beams of precipitating electrons. Moreover, we show how these impulse responses to monoenergetic beams can be used to reconstruct the precipitating source using an inversion technique. Modeling results show that space‐borne measurements of backscattered X‐rays provide a promising method to estimate precipitation spatial size, fluxes, and spectra. 
    more » « less