Abstract Plasmoids (or magnetic islands) are believed to play an important role in the onset of fast magnetic reconnection and particle acceleration during solar flares and eruptions. Direct imaging of flare current sheets and the formation/ejection of multiple plasmoids in extreme-ultraviolet images, along with simultaneous X-ray and radio observations, offers significant insights into the mechanisms driving particle acceleration in solar flares. Here, we present direct imaging of the formation and ejection of multiple plasmoids in flare plasma/current sheets and the associated quasiperiodic pulsations (QPPs) observed at X-ray and radio wavelengths, using observations from the Solar Dynamics Observatory/Atmospheric Imaging Assembly, RHESSI, and the Fermi Gamma-ray Burst Monitor. These plasmoids propagate bidirectionally upward and downward along the flare current sheet beneath the erupting flux rope during two successive flares associated with confined/failed eruptions. The flux rope exhibits evidence of helical kink instability, with the formation and ejection of multiple plasmoids in the flare current sheet, as predicted in an MHD simulation of a kink-unstable flux rope. RHESSI X-ray images show double coronal sources (“looptop” and higher coronal sources) located at both ends of the flare current/plasma sheet. Moreover, we detect an additional transient faint X-ray source (6–12 keV) located between the double coronal sources, which is cospatial with multiple plasmoids in the flare current sheet. X-ray (soft and hard) and radio (decimetric) observations unveil QPPs (periods ≈ 10 s and 100 s) associated with the ejection and coalescence of plasmoids. These observations suggest that energetic electrons are accelerated during the ejection and coalescence of multiple plasmoids in the flare current sheet.
more »
« less
Generation of laboratory nanoflares from multiple braided plasma loops
Solar flares are intense bursts of electromagnetic radiation accompanied by energetic particles and hard X-rays. They occur when magnetic flux loops erupt in the solar atmosphere. Solar observations detect energetic particles and hard X-rays but cannot reveal the generating mechanism because the particle acceleration happens at a scale smaller than the observation resolution. Thus, details of the cross-scale physics that explain the generation of energetic particles and hard X-rays remain a mystery. Here, we present observations from a laboratory experiment that simulates solar coronal loop physics. Transient, localized 7.6-keV X-ray bursts and a several-kilovolt voltage spike are observed in braided magnetic flux ropes of a 2-eV plasma when the braid strand radius is choked down to be at the kinetic scale by either magnetohydrodynamic (MHD) kink or magnetic Rayleigh–Taylor instabilities. This sequence of observations reveals a cross-scale coupling from MHD to non-MHD physics that is likely responsible for generating solar energetic particles and X-ray bursts. All the essential components of this mechanism have been separately observed in the solar corona.
more »
« less
- Award ID(s):
- 2105492
- PAR ID:
- 10407314
- Date Published:
- Journal Name:
- Nature Astronomy
- ISSN:
- 2397-3366
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT Ultra-high energy cosmic rays are the most extreme energetic particles detected on Earth, however, their acceleration sites are still mysterious. We explore the contribution of low-luminosity gamma-ray bursts to the ultra-high energy cosmic ray flux, since they form the bulk of the nearby population. We analyse a representative sample of these bursts detected by BeppoSAX, INTEGRAL, and Swift between 1998–2016, and found that in order to reconcile our theoretical flux with the observed flux, these bursts should accelerate at most 10−13 M⊙ of ultra-high energy cosmic rays.more » « less
-
Abstract Magnetic reconnection is invoked as one of the primary mechanisms to produce energetic particles. We employ large-scale 3D particle-in-cell simulations of reconnection in magnetically dominated ( σ = 10) pair plasmas to study the energization physics of high-energy particles. We identify an acceleration mechanism that only operates in 3D. For weak guide fields, 3D plasmoids/flux ropes extend along the z -direction of the electric current for a length comparable to their cross-sectional radius. Unlike in 2D simulations, where particles are buried in plasmoids, in 3D we find that a fraction of particles with γ ≳ 3 σ can escape from plasmoids by moving along z , and so they can experience the large-scale fields in the upstream region. These “free” particles preferentially move in z along Speiser-like orbits sampling both sides of the layer and are accelerated linearly in time—their Lorentz factor scales as γ ∝ t , in contrast to γ ∝ t in 2D. The energy gain rate approaches ∼ eE rec c , where E rec ≃ 0.1 B 0 is the reconnection electric field and B 0 the upstream magnetic field. The spectrum of free particles is hard, dN free / d γ ∝ γ − 1.5 , contains ∼20% of the dissipated magnetic energy independently of domain size, and extends up to a cutoff energy scaling linearly with box size. Our results demonstrate that relativistic reconnection in GRB and AGN jets may be a promising mechanism for generating ultra-high-energy cosmic rays.more » « less
-
Abstract When and where the magnetic field energy is released and converted in eruptive solar flares remains an outstanding topic in solar physics. To shed light on this question, here we report multiwavelength observations of a C9.4-class eruptive limb flare that occurred on 2017 August 20. The flare, accompanied by a magnetic flux rope eruption and a white light coronal mass ejection, features three post-impulsive X-ray and microwave bursts immediately following its main impulsive phase. For each burst, both microwave and X-ray imaging suggest that the nonthermal electrons are located in the above-the-loop-top region. Interestingly, contrary to many other flares, the peak flux of the three post-impulsive microwave and X-ray bursts shows an increase for later bursts. Spectral analysis reveals that the sources have a hardening spectral index, suggesting a more efficient electron acceleration into the later post-impulsive bursts. We observe a positive correlation between the acceleration of the magnetic flux rope and the nonthermal energy release during the post-impulsive bursts in the same event. Intriguingly, different from some other eruptive events, this correlation does not hold for the main impulse phase of this event, which we interpret as energy release due to the tether-cutting reconnection before the primary flux rope acceleration occurs. In addition, using footpoint brightenings at conjugate flare ribbons, a weakening reconnection guide field is inferred, which may also contribute to the hardening of the nonthermal electrons during the post-impulsive phase.more » « less
-
null (Ed.)Context. Periodicities have frequently been reported across many wavelengths in the solar corona. Correlated periods of ~5 min, comparable to solar p -modes, are suggestive of coupling between the photosphere and the corona. Aims. Our study investigates whether there are correlations in the periodic behavior of Type III radio bursts which are indicative of nonthermal electron acceleration processes, and coronal extreme ultraviolet (EUV) emission used to assess heating and cooling in an active region when there are no large flares. Methods. We used coordinated observations of Type III radio bursts from the FIELDS instrument on Parker Solar Probe (PSP), of EUV emissions by the Solar Dynamics Observatory (SDO) Atmospheric Imaging Assembly (AIA) and white light observations by SDO Helioseismic and Magnetic Image (HMI), and of solar flare X-rays by Nuclear Spectroscopic Telescope Array (NuSTAR) on April 12, 2019. Several methods for assessing periodicities are utilized and compared to validate periods obtained. Results. Periodicities of ~5 min in the EUV in several areas of an active region are well correlated with the repetition rate of the Type III radio bursts observed on both PSP and Wind. Detrended 211 and 171 Å light curves show periodic profiles in multiple locations, with 171 Å peaks sometimes lagging those seen in 211 Å. This is suggestive of impulsive events that result in heating and then cooling in the lower corona. NuSTAR X-rays provide evidence for at least one microflare during the interval of Type III bursts, but there is not a one-to-one correspondence between the X-rays and the Type III bursts. Our study provides evidence for periodic acceleration of nonthermal electrons (required to generate Type III radio bursts) when there were no observable flares either in the X-ray data or the EUV. The acceleration process, therefore, must be associated with small impulsive events, perhaps nanoflares.more » « less
An official website of the United States government

