skip to main content

Title: VLA Imaging of HI-bearing Ultra-Diffuse Galaxies from the ALFALFA Survey
Here we present resolved HI and deep optical imaging of 11 HI-bearing ultra-diffuse galaxies (HUDs) from the Karl G. Jansky Very Large Array and the WIYN 3.5m at Kitt Peak National Observatory. We find that the HUDs show blue, mostly irregular stellar populations, and ordered gas distributions with evidence of rotation. Comparing the HI and stellar populations, we find that the HI extends significantly beyond the stellar component, and that the HI disk is often misaligned with respect to the stellar one. We explore the HI mass-diameter scaling relation, and find that though the HUDs have diffuse stellar populations, they fall along this relation, with typical global HI surface densities. We also use 3D kinematic modeling to explore the Baryonic Tully Fisher Relation, and find that the HUDs fall off the relation, rotating too slowly for their baryonic mass, and are compatible with having no "missing baryons."
Authors:
; ; ; ; ;
Award ID(s):
1637339
Publication Date:
NSF-PAR ID:
10168210
Journal Name:
American Astronomical Society meeting
Volume:
235
Page Range or eLocation-ID:
168.23
ISSN:
2152-887X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ultra-diffuse galaxies (UDGs) are galaxies with a very low optical surface brightness; they have very few stars for their given radius. Since UDGs are thus difficult to study in visible light, we observe radio emission from neutral hydrogen gas (HI) in these galaxies. Here we present observations of the HI gas in the UDGs AGC 749290 and AGC 238764. Initially selected from a sample of Ultra-Diffuse Galaxies detected in the ALFALFA survey, these sources were imaged as a part of a follow up program using the Jansky Very Large Array (VLA) in both C and D configurations. We reduce themore »data using the CASA software suite, removing radio interference, applying calibration, and creating images. From these data we obtain spectra and maps of the galaxies' HI distribution and radial velocities. We find that both sources show ordered gas distributions and rotation, and that the HI gas extends well beyond the already extended optical emission. Further, we estimate inclinations and plot these sources on the Baryonic Tully-Fisher relation, providing tentative evidence that these sources are rotating too slowly for their given mass. This work has been supported by NSF grant AST-1637339.« less
  2. ABSTRACT We study the gas kinematics of a sample of six isolated gas-rich low surface brightness galaxies, of the class called ultra-diffuse galaxies (UDGs). These galaxies have recently been shown to be outliers from the baryonic Tully–Fisher relation (BTFR), as they rotate much slower than expected given their baryonic mass, and to have a baryon fraction similar to the cosmological mean. By means of a 3D kinematic modelling fitting technique, we show that the H i in our UDGs is distributed in ‘thin’ regularly rotating discs and we determine their rotation velocity and gas velocity dispersion. We revisit the BTFR addingmore »galaxies from other studies. We find a previously unknown trend between the deviation from the BTFR and the exponential disc scale length valid for dwarf galaxies with circular speeds ≲ 45 km s−1, with our UDGs being at the extreme end. Based on our findings, we suggest that the high baryon fractions of our UDGs may originate due to the fact that they have experienced weak stellar feedback, likely due to their low star formation rate surface densities, and as a result they did not eject significant amounts of gas out of their discs. At the same time, we find indications that our UDGs may have higher-than-average stellar specific angular momentum, which can explain their large optical scale lengths.« less
  3. The Undergraduate ALFALFA team is currently focusing on the analysis of the Pisces-Perseus Supercluster to test current supercluster formation models. The primary goal of our research is to reduce L-band HI data from the Arecibo telescope. To reduce the data we use IDL programs written by our collaborators to reduce the data and find potential sources whose mass can be estimated by the baryonic Tully-Fisher relation, which relates the luminosity to the rotational velocity profile of spiral galaxies. Thus far we have reduced data and estimated HI masses for several galaxies in the supercluster region. We will give examples ofmore »data reduction and preliminary results for both the fall 2015 and 2016 observing seasons. We will also describe the data reduction process and the process of learning the associated software, and the use of virtual observatory tools such as the SDSS databases, Aladin, TOPCAT and others. This research was supported by the NSF grant AST-1211005. (Student Poster Presentation)« less
  4. The Undergraduate ALFALFA team is currently focusing on the analysis of the Pisces-Perseus Supercluster to test current supercluster formation models. The primary goal of our research is to reduce L-band HI data from the Arecibo telescope. To reduce the data we use IDL programs written by our collaborators to reduce the data and find potential sources whose mass can be estimated by the baryonic Tully-Fisher relation, which relates the luminosity to the rotational velocity profile of spiral galaxies. Thus far we have reduced data and estimated HI masses for several galaxies in the supercluster region.We will give examples of datamore »reduction and preliminary results for both the fall 2015 and 2016 observing seasons. We will also describe the data reduction process and the process of learning the associated software, and the use of virtual observatory tools such as the SDSS databases, Aladin, TOPCAT and others.This research was supported by the NSF grant AST-1211005.« less
  5. The Arecibo Pisces-Perseus Supercluster Survey(APPSS) aims to measure the infall and mass density along the PPS filament using red-shift independent distances obtained from the Baryonic Tully-Fisher Relation (BTFR). We will combine photometric data from the Sloan Digital Sky Survey with HI line spectroscopy obtained with the Arecibo telescope to derive BTFR distances and peculiar velocities over the PPS volume and its immediate foreground and background. To supplement the ALFALFA detections in the PPS volume, we have conducted new HI line observations with the Arecibo L-band Wide receiver system of blue, low surface brightness galaxies identified by their photometric properties inmore »the Sloan Digital Sky Survey (SDSS). These targets are predicted to lie in the PPS volume but with HI masses of 8.0 < log HI mass < 9.0, putting them below the ALFALFA detection limit at that distance. We compare a preliminary sample of 634 galaxies detected as part from the APPSS survey with the main ALFALFA survey and other public catalogs of local galaxies, confirming that the new APPSS HI line detections are rotation-dominated, HI bearing galaxies with low stellar mass. Nearly all are star-forming, bluer, and of lower surface brightness, extinction and metallicity than optically selected samples. Preliminary BTFRs were calculated for both APPSS and ALFALFA galaxies and compared with BTFRs of simulated galaxies similar to those found in APPSS and ALFALFA using simulations such as IllustrisTNG (see poster by J. Borden). This work has been supported by NSF/AST-1714828 and the Brinson Foundation.« less