One of the most fundamental baryonic matter components of galaxies is the neutral atomic hydrogen (H
- Award ID(s):
- 1909153
- Publication Date:
- NSF-PAR ID:
- 10347528
- Journal Name:
- The Astrophysical Journal
- Volume:
- 922
- Issue:
- 2
- Page Range or eLocation-ID:
- 147
- ISSN:
- 0004-637X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract i ). At low redshifts, this component can be traced directly through the 21 cm transition, but to infer the Hi gas content of the most distant galaxies, a viable tracer is needed. We here investigate the fidelity of the fine-structure transition of the (2P 3/2−2P 1/3) transition of singly ionized carbon Cii at 158μ m as a proxy for Hi in a set simulated galaxies atz ≈ 6, following the work by Heintz et al. We select 11,125 star-forming galaxies from thesimba simulations, with far-infrared line emissions postprocessed and modeled within the Sigame framework. We find a strong connection between Cii and Hi , with the relation between this Cii -to-Hi relation (β [CII ]) being anticorrelated with the gas-phase metallicity of the simulated galaxies. We further use these simulations to make predictions for the total baryonic matter content of galaxies atz ≈ 6, and specifically the Hi gas mass fraction. We find mean values ofM H I/M ⋆= 1.4 andM H I/M bar,tot= 0.45. These results provide strong evidence for Hi being the dominant baryonic matter component by mass in galaxies atz ≈ 6. -
We investigate the molecular gas content of z ∼ 6 quasar host galaxies using the Institut de Radioastronomie Millimétrique Northern Extended Millimeter Array. We targeted the 3 mm dust continuum, and the line emission from CO(6–5), CO(7–6), and [C I ] 2−1 in ten infrared–luminous quasars that have been previously studied in their 1 mm dust continuum and [C II ] line emission. We detected CO(7–6) at various degrees of significance in all the targeted sources, thus doubling the number of such detections in z ∼ 6 quasars. The 3 mm to 1 mm flux density ratios are consistent with a modified black body spectrum with a dust temperature T dust ∼ 47 K and an optical depth τ ν = 0.2 at the [C II ] frequency. Our study provides us with four independent ways to estimate the molecular gas mass, M H2 , in the targeted quasars. This allows us to set constraints on various parameters used in the derivation of molecular gas mass estimates, such as the mass per luminosity ratios α CO and α [CII] , the gas-to-dust mass ratio δ g/d , and the carbon abundance [C]/H 2 . Leveraging either on the dust, CO, [C I ], ormore »
-
Abstract We report Hubble Space Telescope Cosmic Origins Spectrograph spectroscopy of 10 quasars with foreground star-forming galaxies at 0.02 < z < 0.14 within impact parameters of ∼1–7 kpc. We detect damped/sub-damped Ly α (DLA/sub-DLA) absorption in 100% of cases where no higher-redshift Lyman-limit systems extinguish the flux at the expected wavelength of Ly α absorption, obtaining the largest targeted sample of DLA/sub-DLAs in low-redshift galaxies. We present absorption measurements of neutral hydrogen and metals. Additionally, we present Green Bank Telescope 21 cm emission measurements for five of the galaxies (including two detections). Combining our sample with the literature, we construct a sample of 117 galaxies associated with DLA/sub-DLAs spanning 0 < z < 4.4, and examine trends between gas and stellar properties, and with redshift. The H i column density is anticorrelated with impact parameter and stellar mass. More massive galaxies appear to have gas-rich regions out to larger distances. The specific star formation rate (sSFR) of absorbing galaxies increases with redshift and decreases with M *, consistent with evolution of the star formation main sequence (SFMS). However, ∼20% of absorbing galaxies lie below the SFMS, indicating that some DLA/sub-DLAs trace galaxies with longer-than-typical gas-depletion timescales. Most DLA/sub-DLA galaxiesmore »
-
Abstract We present the discovery of neutral gas detected in both damped Ly
α absorption (DLA) and Hi 21 cm emission outside of the stellar body of a galaxy, the first such detection in the literature. A joint analysis between the Cosmic Ultraviolet Baryon Survey and the MeerKAT Absorption Line Survey reveals an Hi bridge connecting two interacting dwarf galaxies (log (M star/M ⊙) = 8.5 ± 0.2) that host az = 0.026 DLA with log[N (Hi )/cm−2] = 20.60 ± 0.05 toward the QSO J2339−5523 (z QSO= 1.35). At impact parameters ofd = 6 and 33 kpc, the dwarf galaxies have no companions more luminous than ≈0.05L *within at least Δv = ±300 km s−1andd ≈ 350 kpc. The Hi 21 cm emission is spatially coincident with the DLA at the 2σ –3σ level per spectral channel over several adjacent beams. However, Hi 21 cm absorption is not detected against the radio-bright QSO; if the background UV and radio sources are spatially aligned, the gas is either warm or clumpy (with a spin temperature to covering factor ratioT s /f c > 1880 K). Observations with VLT-MUSE demonstrate that theα -element abundance of the ionized interstellar medium (ISM) is consistent with the DLA (≈10% solar), suggesting that the neutral gas envelope is perturbed ISM gas. This study showcases the impact of dwarf–dwarfmore » -
Abstract We investigate the fine-structure [C ii ] line at 158 μ m as a molecular gas tracer by analyzing the relationship between molecular gas mass ( M mol ) and [C ii ] line luminosity ( L [C II ] ) in 11,125 z ≃ 6 star-forming, main-sequence galaxies from the simba simulations, with line emission modeled by the Simulator of Galaxy Millimeter/Submillimeter Emission. Though most (∼50%–100%) of the gas mass in our simulations is ionized, the bulk (>50%) of the [C ii ] emission comes from the molecular phase. We find a sublinear (slope 0.78 ± 0.01) log L [ C II ] – log M mol relation, in contrast with the linear relation derived from observational samples of more massive, metal-rich galaxies at z ≲ 6. We derive a median [C ii ]-to- M mol conversion factor of α [C II ] ≃ 18 M ⊙ / L ⊙ . This is lower than the average value of ≃30 M ⊙ / L ⊙ derived from observations, which we attribute to lower gas-phase metallicities in our simulations. Thus, a lower, luminosity-dependent conversion factor must be applied when inferring molecular gas masses from [C ii ] observations ofmore »