Abstract One of the most fundamental baryonic matter components of galaxies is the neutral atomic hydrogen (Hi). At low redshifts, this component can be traced directly through the 21 cm transition, but to infer the Higas content of the most distant galaxies, a viable tracer is needed. We here investigate the fidelity of the fine-structure transition of the (2P3/2−2P1/3) transition of singly ionized carbon Ciiat 158μm as a proxy for Hiin a set simulated galaxies atz≈ 6, following the work by Heintz et al. We select 11,125 star-forming galaxies from thesimbasimulations, with far-infrared line emissions postprocessed and modeled within the Sigameframework. We find a strong connection between Ciiand Hi, with the relation between this Cii-to-Hirelation (β[CII]) being anticorrelated with the gas-phase metallicity of the simulated galaxies. We further use these simulations to make predictions for the total baryonic matter content of galaxies atz≈ 6, and specifically the Higas mass fraction. We find mean values ofMH I/M⋆= 1.4 andMH I/Mbar,tot= 0.45. These results provide strong evidence for Hibeing the dominant baryonic matter component by mass in galaxies atz≈ 6.
more »
« less
Measuring the H i Content of Individual Galaxies Out to the Epoch of Reionization with [C ii]
Abstract The H i gas content is a key ingredient in galaxy evolution, the study of which has been limited to moderate cosmological distances for individual galaxies due to the weakness of the hyperfine H i 21 cm transition. Here we present a new approach that allows us to infer the H i gas mass M HI of individual galaxies up to z ≈ 6, based on a direct measurement of the [C ii ]-to-H i conversion factor in star-forming galaxies at z ≳ 2 using γ -ray burst afterglows. By compiling recent [C ii ]-158 μ m emission line measurements we quantify the evolution of the H i content in galaxies through cosmic time. We find that M HI starts to exceed the stellar mass M ⋆ at z ≳ 1, and increases as a function of redshift. The H i fraction of the total baryonic mass increases from around 20% at z = 0 to about 60% at z ∼ 6. We further uncover a universal relation between the H i gas fraction M HI / M ⋆ and the gas-phase metallicity, which seems to hold from z ≈ 6 to z = 0. The majority of galaxies at z > 2 are observed to have H i depletion times, t dep,HI = M HI /SFR, less than ≈2 Gyr, substantially shorter than for z ∼ 0 galaxies. Finally, we use the [C ii ]-to-H i conversion factor to determine the cosmic mass density of H i in galaxies, ρ HI , at three distinct epochs: z ≈ 0, z ≈ 2, and z ∼ 4–6. These measurements are consistent with previous estimates based on 21 cm H i observations in the local universe and with damped Ly α absorbers (DLAs) at z ≳ 2, suggesting an overall decrease by a factor of ≈5 in ρ HI ( z ) from the end of the reionization epoch to the present.
more »
« less
- Award ID(s):
- 1909153
- PAR ID:
- 10347528
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 922
- Issue:
- 2
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 147
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We investigate the molecular gas content of z ∼ 6 quasar host galaxies using the Institut de Radioastronomie Millimétrique Northern Extended Millimeter Array. We targeted the 3 mm dust continuum, and the line emission from CO(6–5), CO(7–6), and [C I ] 2−1 in ten infrared–luminous quasars that have been previously studied in their 1 mm dust continuum and [C II ] line emission. We detected CO(7–6) at various degrees of significance in all the targeted sources, thus doubling the number of such detections in z ∼ 6 quasars. The 3 mm to 1 mm flux density ratios are consistent with a modified black body spectrum with a dust temperature T dust ∼ 47 K and an optical depth τ ν = 0.2 at the [C II ] frequency. Our study provides us with four independent ways to estimate the molecular gas mass, M H2 , in the targeted quasars. This allows us to set constraints on various parameters used in the derivation of molecular gas mass estimates, such as the mass per luminosity ratios α CO and α [CII] , the gas-to-dust mass ratio δ g/d , and the carbon abundance [C]/H 2 . Leveraging either on the dust, CO, [C I ], or [C II ] emission yields mass estimates of the entire sample in the range M H2 ∼ 10 10 –10 11 M ⊙ . We compared the observed luminosities of dust, [C II ], [C I ], and CO(7–6) with predictions from photo-dissociation and X-ray dominated regions. We find that the former provide better model fits to our data, assuming that the bulk of the emission arises from dense ( n H > 10 4 cm −3 ) clouds with a column density N H ∼ 10 23 cm −2 , exposed to a radiation field with an intensity of G 0 ∼ 10 3 (in Habing units). Our analysis reiterates the presence of massive reservoirs of molecular gas fueling star formation and nuclear accretion in z ∼ 6 quasar host galaxies. It also highlights the power of combined 3 mm and 1 mm observations for quantitative studies of the dense gas content in massive galaxies at cosmic dawn.more » « less
-
Abstract We report Hubble Space Telescope Cosmic Origins Spectrograph spectroscopy of 10 quasars with foreground star-forming galaxies at 0.02 < z < 0.14 within impact parameters of ∼1–7 kpc. We detect damped/sub-damped Ly α (DLA/sub-DLA) absorption in 100% of cases where no higher-redshift Lyman-limit systems extinguish the flux at the expected wavelength of Ly α absorption, obtaining the largest targeted sample of DLA/sub-DLAs in low-redshift galaxies. We present absorption measurements of neutral hydrogen and metals. Additionally, we present Green Bank Telescope 21 cm emission measurements for five of the galaxies (including two detections). Combining our sample with the literature, we construct a sample of 117 galaxies associated with DLA/sub-DLAs spanning 0 < z < 4.4, and examine trends between gas and stellar properties, and with redshift. The H i column density is anticorrelated with impact parameter and stellar mass. More massive galaxies appear to have gas-rich regions out to larger distances. The specific star formation rate (sSFR) of absorbing galaxies increases with redshift and decreases with M *, consistent with evolution of the star formation main sequence (SFMS). However, ∼20% of absorbing galaxies lie below the SFMS, indicating that some DLA/sub-DLAs trace galaxies with longer-than-typical gas-depletion timescales. Most DLA/sub-DLA galaxies with 21 cm emission have higher H i masses than typical galaxies with comparable M *. High M HI / M * ratios and high sSFRs in DLA/sub-DLA galaxies with M * < 10 9 M ⊙ suggest these galaxies may be gas-rich because of recent gas accretion rather than inefficient star formation. Our study demonstrates the power of absorption and emission studies of DLA/sub-DLA galaxies for extending galactic evolution studies to previously under-explored regimes of low M * and low SFR.more » « less
-
Abstract We present the discovery of neutral gas detected in both damped Lyαabsorption (DLA) and Hi21 cm emission outside of the stellar body of a galaxy, the first such detection in the literature. A joint analysis between the Cosmic Ultraviolet Baryon Survey and the MeerKAT Absorption Line Survey reveals an Hibridge connecting two interacting dwarf galaxies (log (Mstar/M⊙) = 8.5 ± 0.2) that host az= 0.026 DLA with log[N(Hi)/cm−2] = 20.60 ± 0.05 toward the QSO J2339−5523 (zQSO= 1.35). At impact parameters ofd= 6 and 33 kpc, the dwarf galaxies have no companions more luminous than ≈0.05L*within at least Δv= ±300 km s−1andd≈ 350 kpc. The Hi21 cm emission is spatially coincident with the DLA at the 2σ–3σlevel per spectral channel over several adjacent beams. However, Hi21 cm absorption is not detected against the radio-bright QSO; if the background UV and radio sources are spatially aligned, the gas is either warm or clumpy (with a spin temperature to covering factor ratioTs/fc> 1880 K). Observations with VLT-MUSE demonstrate that theα-element abundance of the ionized interstellar medium (ISM) is consistent with the DLA (≈10% solar), suggesting that the neutral gas envelope is perturbed ISM gas. This study showcases the impact of dwarf–dwarf interactions on the physical and chemical state of neutral gas outside of star-forming regions. In the SKA era, joint UV and Hi21 cm analyses will be critical for connecting the cosmic neutral gas content to galaxy environments.more » « less
-
Abstract We report that the neutral hydrogen (Hi) mass density of the Universe (ρHi) increases with cosmic time sincez ∼ 5, peaks atz ∼ 3, and then decreases towardz ∼ 0. This is the first result of Qz5, our spectroscopic survey of 63 quasars atz ≳ 5 with VLT/X-SHOOTER and Keck/ESI aimed at characterizing intervening Higas absorbers atz ∼ 5. The main feature of Qz5 is the high resolution (R ∼ 7000–9000) of the spectra, which allows us to (1) accurately detect high column density Higas absorbers in an increasingly neutral intergalactic medium atz ∼ 5 and (2) determine the reliability of previousρHimeasurements derived with lower resolution spectroscopy. We find five intervening damped Lyαabsorbers (DLAs) atz > 4.5, which corresponds to the lowest DLA incidence rate ( ) atz ≳ 2. We also measure the lowestρHiatz ≳ 2 from our sample of DLAs and subDLAs, corresponding toρHi Mpc−3atz ∼ 5. Taking into account our measurements atz ∼ 5 and systematic biases in the DLA detection rate at lower spectral resolutions, we conclude thatρHidoubles fromz ∼ 5 toz ∼ 3. From these results emerges a qualitative agreement between how the cosmic densities of Higas mass, molecular gas mass, and star formation rate build up with cosmic time.more » « less
An official website of the United States government

