skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Vortex phase diagram and the normal state of cuprates with charge and spin orders
The phase diagram of underdoped cuprates in a magnetic field ( H ) is key to understanding the anomalous normal state of these high-temperature superconductors. However, the upper critical field ( H c2 ), the extent of superconducting (SC) phase with vortices, and the role of charge orders at high H remain controversial. Here we study stripe-ordered La-214, i.e., cuprates in which charge orders are most pronounced and zero-field SC transition temperatures T c 0 are lowest. This enables us to explore the vortex phases in a previously inaccessible energy scale window. By combining linear and nonlinear transport techniques sensitive to vortex matter, we determine the T − H phase diagram, directly detect H c2 , and reveal novel properties of the high-field ground state. Our results demonstrate that quantum fluctuations and disorder play a key role as T → 0 , while the high-field ground state is likely a metal, not an insulator, due to the presence of stripes.  more » « less
Award ID(s):
1707785
PAR ID:
10168258
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Science Advances
Volume:
6
Issue:
7
ISSN:
2375-2548
Page Range / eLocation ID:
eaay8946
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract The origin of the weak insulating behavior of the resistivity, i.e. $${\rho }_{xx}\propto {\mathrm{ln}}\,(1/T)$$ ρ x x ∝ ln ( 1 / T ) , revealed when magnetic fields ( H ) suppress superconductivity in underdoped cuprates has been a longtime mystery. Surprisingly, the high-field behavior of the resistivity observed recently in charge- and spin-stripe-ordered La-214 cuprates suggests a metallic, as opposed to insulating, high-field normal state. Here we report the vanishing of the Hall coefficient in this field-revealed normal state for all $$T\ <\ (2-6){T}_{{\rm{c}}}^{0}$$ T < ( 2 − 6 ) T c 0 , where $${T}_{{\rm{c}}}^{0}$$ T c 0 is the zero-field superconducting transition temperature. Our measurements demonstrate that this is a robust fundamental property of the normal state of cuprates with intertwined orders, exhibited in the previously unexplored regime of T and H . The behavior of the high-field Hall coefficient is fundamentally different from that in other cuprates such as YBa 2 Cu 3 O 6+ x and YBa 2 Cu 4 O 8 , and may imply an approximate particle-hole symmetry that is unique to stripe-ordered cuprates. Our results highlight the important role of the competing orders in determining the normal state of cuprates. 
    more » « less
  2. null (Ed.)
    Abstract We present an extensive study of vortex dynamics in a high-quality single crystal of HgBa 2 CuO 4+ δ , a highly anisotropic superconductor that is a model system for studying the effects of anisotropy. From magnetization M measurements over a wide range of temperatures T and fields H , we construct a detailed vortex phase diagram. We find that the temperature-dependent vortex penetration field H p ( T ), second magnetization peak H smp ( T ), and irreversibility field H irr ( T ) all decay exponentially at low temperatures and exhibit an abrupt change in behavior at high temperatures T / T c  >~ 0.5. By measuring the rates of thermally activated vortex motion (creep) S ( T , H ) = | d ln M ( T , H )/ d ln t |, we reveal glassy behavior involving collective creep of bundles of 2D pancake vortices as well as temperature- and time-tuned crossovers from elastic (collective) dynamics to plastic flow. Based on the creep results, we show that the second magnetization peak coincides with the elastic-to-plastic crossover at low T , yet the mechanism changes at higher temperatures. 
    more » « less
  3. A microscopic understanding of vortex pinning in type II superconductors began with the theoretical discovery of magnetic vortices by Abrikosov, which received the 2003 Nobel Prize in Physics [1, 2]. When type II superconductors are exposed to magnetic fields (H), the magnetic field enters as quantized vortices, each with a fundamental flux j0 = 2.07 × 10−11 T cm−2 , or 2.07 × 10−15 Wb. The vortex core size on the order of the superconducting coherence length can be very small, e.g. ∼1–2 nm for the cuprate family of high-temperature superconductors (HTSs). The vortices electrically interact with each other by repelling, and act collectively together as a flux lattice that is affected by the intrinsic crystal lattice properties and microstructure defects. For superconducting power applications where applied magnetic fields are in the range of 0.1 T to >30 T, the areal number density of the vortices can reach incredibly high values. For example, for an applied magnetic field of 5 T, the vortex areal density is around 2.5 × 1011 cm−2 , which translates to inter-vortex spacing of about 20 nm (assuming a square lattice for vortices). Somewhat surprisingly, if the crystal lattice for type II superconductors, such as HTS cuprates [3] is nearly perfect without any defects to pin vortices, the vortices can move collectively and almost freely in an applied magnetic field due to Lorentz forces, which results in electrical resistance at a fairly low critical current density Jc(H, T) at an applied magnetic field (H) and temperature (T). In order to realize useful critical current densities in type II superconductors, imperfections and defects must be added to the crystal lattice to effectively pin vortices. The simplest example of this was achieved in the (Y, RE)Ba2Cu3O7 (where RE is rare earth elements) family by depositing thin films, in which high densities of dislocations and other growth defects are added into the film microstructure and dramatically increase the critical current density Jc(77 K, H//c-axis) > 106 A cm−2 compared to Jc (77 K) < 103 A cm−2 for single crystals [4–6] 
    more » « less
  4. An understanding of the normal state in the high-temperature superconducting cuprates is crucial to the ultimate understanding of the long-standing problem of the origin of the superconductivity itself. This so-called “strange metal” state is thought to be associated with a quantum critical point (QCP) hidden beneath the superconductivity. In electron-doped cuprates—in contrast to hole-doped cuprates—it is possible to access the normal state at very low temperatures and low magnetic fields to study this putative QCP and to probe the T ➔ 0 K state of these materials. We report measurements of the low-temperature normal-state magnetoresistance (MR) of the n-type cuprate system La 2− x Ce x CuO 4 and find that it is characterized by a linear-in-field behavior, which follows a scaling relation with applied field and temperature, for doping ( x ) above the putative QCP ( x = 0.14). The magnitude of the unconventional linear MR decreases as T c decreases and goes to zero at the end of the superconducting dome ( x ~ 0.175) above which a conventional quadratic MR is found. These results show that there is a strong correlation between the quantum critical excitations of the strange metal state and the high- T c superconductivity. 
    more » « less
  5. We present a valence transition model for electron- and hole-doped cuprates, within which there occurs a discrete jump in ionicity Cu2+ -> Cu1+ in both families upon doping, at or near optimal doping in the conventionally prepared electron-doped compounds and at the pseudogap phase transition in the hole-doped materials. In thin films of the T' compounds, the valence transition has occurred already in the undoped state. The phenomenology of the valence transition is closely related to that of the neutral-to-ionic transition in mixed-stack organic charge-transfer solids. Doped cuprates have negative charge-transfer gaps, just as rare-earth nickelates and BaBiO3. The unusually high ionization energy of the closed shell Cu1+ ion, taken together with the dopingdriven reduction in three-dimensional Madelung energy and gain in two-dimensional delocalization energy in the negative charge transfer gap state drives the transition in the cuprates. The combined effects of strong correlations and small d-p electron hoppings ensure that the systems behave as effective 1/2-filled Cu band with the closed shell electronically inactive O2- ions in the undoped state, and as correlated two-dimensional geometrically frustrated 1/4-filled oxygen hole band, now with electronically inactive closed-shell Cu1+ ions, in the doped state. The model thus gives microscopic justification for the two-fluid models suggested by many authors. The theory gives the simplest yet most comprehensive understanding of experiments in the normal states. The robust commensurate antiferromagnetism in the conventional T' crystals, the strong role of oxygen deficiency in driving superconductivity and charge carrier sign corresponding to holes at optimal doping are all manifestations of the same quantum state. In the hole-doped pseudogapped state, there occurs a biaxial commensurate period 4 charge density wave state consisting of O1- -Cu l(1+)-O1- spin singlets that coexists with broken rotational C-4 symmetry due to intraunit cell oxygen inequivalence. Finite domains of this broken symmetry state will exhibit twodimensional chirality and the polar Kerr effect. Superconductivity within the model results from a destabilization of the 1/4-filled band paired Wigner crystal [Phys. Rev. B 93, 165110 (2016) and ihid. 93, 205111 (2016)]. We posit that a similar valence transition, Ir4+ -> Ir3+, occurs upon electron doping Sr2IrO4. We make testable experimental predictions in cuprates including superoxygenated La2CuO4+delta and iridates. Finally, as indirect evidence for the valence bond theory of superconductivity proposed here, we note that there exist an unusually large number of unconventional superconductors that exhibit superconductivity proximate to exotic charge ordered states, whose band fillings are universally 1/4 or 3/4, exactly where the paired Wigner crystal is most stable. 
    more » « less