Abstract MotivationThe identification and understanding of drug–target interactions (DTIs) play a pivotal role in the drug discovery and development process. Sequence representations of drugs and proteins in computational model offer advantages such as their widespread availability, easier input quality control, and reduced computational resource requirements. These make them an efficient and accessible tools for various computational biology and drug discovery applications. Many sequence-based DTI prediction methods have been developed over the years. Despite the advancement in methodology, cold start DTI prediction involving unknown drug or protein remains a challenging task, particularly for sequence-based models. Introducing DTI-LM, a novel framework leveraging advanced pretrained language models, we harness their exceptional context-capturing abilities along with neighborhood information to predict DTIs. DTI-LM is specifically designed to rely solely on sequence representations for drugs and proteins, aiming to bridge the gap between warm start and cold start predictions. ResultsLarge-scale experiments on four datasets show that DTI-LM can achieve state-of-the-art performance on DTI predictions. Notably, it excels in overcoming the common challenges faced by sequence-based models in cold start predictions for proteins, yielding impressive results. The incorporation of neighborhood information through a graph attention network further enhances prediction accuracy. Nevertheless, a disparity persists between cold start predictions for proteins and drugs. A detailed examination of DTI-LM reveals that language models exhibit contrasting capabilities in capturing similarities between drugs and proteins. Availability and implementationSource code is available at: https://github.com/compbiolabucf/DTI-LM.
more »
« less
Self-Attention Based Molecule Representation for Predicting Drug-Target Interaction
Predicting drug-target interactions (DTI) is an essential part of the drug discovery process, which is an expensive process in terms of time and cost. Therefore, reducing DTI cost could lead to reduced healthcare costs for a patient. In addition, a precisely learned molecule representation in a DTI model could contribute to developing personalized medicine, which will help many patient cohorts. In this paper, we propose a new molecule representation based on the self-attention mechanism, and a new DTI model using our molecule representation. The experiments show that our DTI model outperforms the state of the art by up to 4.9% points in terms of area under the precision-recall curve. Moreover, a study using the DrugBank database proves that our model effectively lists all known drugs targeting a specific cancer biomarker in the top-30 candidate list.
more »
« less
- Award ID(s):
- 1838200
- PAR ID:
- 10168361
- Date Published:
- Journal Name:
- Proceedings of the 4th Machine Learning for Healthcare Conference
- Page Range / eLocation ID:
- 230-248
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract MotivationAccurately predicting drug–target interactions (DTIs) in silico can guide the drug discovery process and thus facilitate drug development. Computational approaches for DTI prediction that adopt the systems biology perspective generally exploit the rationale that the properties of drugs and targets can be characterized by their functional roles in biological networks. ResultsInspired by recent advance of information passing and aggregation techniques that generalize the convolution neural networks to mine large-scale graph data and greatly improve the performance of many network-related prediction tasks, we develop a new nonlinear end-to-end learning model, called NeoDTI, that integrates diverse information from heterogeneous network data and automatically learns topology-preserving representations of drugs and targets to facilitate DTI prediction. The substantial prediction performance improvement over other state-of-the-art DTI prediction methods as well as several novel predicted DTIs with evidence supports from previous studies have demonstrated the superior predictive power of NeoDTI. In addition, NeoDTI is robust against a wide range of choices of hyperparameters and is ready to integrate more drug and target related information (e.g. compound–protein binding affinity data). All these results suggest that NeoDTI can offer a powerful and robust tool for drug development and drug repositioning. Availability and implementationThe source code and data used in NeoDTI are available at: https://github.com/FangpingWan/NeoDTI. Supplementary informationSupplementary data are available at Bioinformatics online.more » « less
-
Virtual screening is a cost- and time-effective alternative to traditional high-throughput screening in the drug discovery process. Both virtual screening approaches, structure-based molecular docking and ligand-based cheminformatics, suffer from computational cost, low accuracy, and/or reliance on prior knowledge of a ligand that binds to a given target. Here, we propose a neural network framework, NeuralDock, which accelerates the process of high-quality computational docking by a factor of 10 6 , and does not require prior knowledge of a ligand that binds to a given target. By approximating both protein-small molecule conformational sampling and energy-based scoring, NeuralDock accurately predicts the binding energy, and affinity of a protein-small molecule pair, based on protein pocket 3D structure and small molecule topology. We use NeuralDock and 25 GPUs to dock 937 million molecules from the ZINC database against superoxide dismutase-1 in 21 h, which we validate with physical docking using MedusaDock. Due to its speed and accuracy, NeuralDock may be useful in brute-force virtual screening of massive chemical libraries and training of generative drug models.more » « less
-
Abstract Implantable, bioresorbable drug delivery systems offer an alternative to current drug administration techniques; allowing for patient‐tailored drug dosage, while also increasing patient compliance. Mechanistic mathematical modeling allows for the acceleration of the design of the release systems, and for prediction of physical anomalies that are not intuitive and may otherwise elude discovery. This study investigates short‐term drug release as a function of water‐mediated polymer phase inversion into a solid depot within hours to days, as well as long‐term hydrolysis‐mediated degradation and erosion of the implant over the next few weeks. Finite difference methods are used to model spatial and temporal changes in polymer phase inversion, solidification, and hydrolysis. Modeling reveals the impact of non‐uniform drug distribution, production and transport of H+ions, and localized polymer degradation on the diffusion of water, drug, and hydrolyzed polymer byproducts. Compared to experimental data, the computational model accurately predicts the drug release during the solidification of implants over days and drug release profiles over weeks from microspheres and implants. This work offers new insight into the impact of various parameters on drug release profiles, and is a new tool to accelerate the design process for release systems to meet a patient specific clinical need.more » « less
-
Background: Though the development of targeted cancer drugs continues to accelerate, doctors still lack reliable methods for predicting patient response to standard-of-care therapies for most cancers. DNA methylation has been implicated in tumor drug response and is a promising source of predictive biomarkers of drug efficacy, yet the relationship between drug efficacy and DNA methylation remains largely unexplored. Method: In this analysis, we performed log-rank survival analyses on patients grouped by cancer and drug exposure to find CpG sites where binary methylation status is associated with differential survival in patients treated with a specific drug but not in patients with the same cancer who were not exposed to that drug. We also clustered these drug-specific CpG sites based on co-methylation among patients to identify broader methylation patterns that may be related to drug efficacy, which we investigated for transcription factor binding site enrichment using gene set enrichment analysis. Results: We identified CpG sites that were drug-specific predictors of survival in 38 cancer-drug patient groups across 15 cancers and 20 drugs. These included 11 CpG sites with similar drug-specific survival effects in multiple cancers. We also identified 76 clusters of CpG sites with stronger associations with patient drug response, many of which contained CpG sites in gene promoters containing transcription factor binding sites. Conclusion: These findings are promising biomarkers of drug response for a variety of drugs and contribute to our understanding of drug-methylation interactions in cancer. Investigation and validation of these results could lead to the development of targeted co-therapies aimed at manipulating methylation in order to improve efficacy of commonly used therapies and could improve patient survival and quality of life by furthering the effort toward drug response prediction.more » « less
An official website of the United States government

