skip to main content


Title: Dynamic Compression Garments for Sensory Processing Disorder Treatment Using Integrated Active Materials
Many medical conditions, including sensory processing disorder (SPD), employ compression therapy as a form of treatment. SPD patients often wear weighted or elastic vests to produce compression on the body, which have been shown to have a calming effect on the wearer. Recent advances in compression garment technology incorporate active materials to produce dynamic, low bulk compression garments that can be remotely controlled. In this study, an active compression vest using shape memory alloy (SMA) spring actuators was developed to produce up to 52.5 mmHg compression on a child's torso for SPD applications. The vest prototype incorporated 16 SMA spring actuators (1.25 mm diameter, spring index = 3) that constrict when heated, producing large forces and displacements that can be controlled via an applied current. When power was applied (up to 43.8 W), the prototype vest generated increasing magnitudes of pressure (up to 37.6 mmHg, spatially averaged across the front of the torso) on a representative child-sized form. The average pressure generated was measured up to 71.6% of the modeled pressure, and spatial pressure nonuniformities were observed that can be traced to specific garment architectural features. Although there is no consistent standard in magnitude or distribution of applied force in compression therapy garments, it is clear from comparative benchmarks that the compression produced by this garment exceeds the demands of the target application. This study demonstrates the viability of SMA-based compression garments as an enabling technology for enhancing SPD (and other compression-based) treatment.  more » « less
Award ID(s):
1656995
NSF-PAR ID:
10101395
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Medical Devices
Volume:
13
Issue:
2
ISSN:
1932-6181
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Textile-based compression devices are widely used in fields such as healthcare, astronautics, cosmetics, defense, and more. While traditional compression garments are only able to apply passive pressure on the body, there have been some efforts to integrate smart materials such as shape memory alloys (SMAs) to make compression garments active and controllable. However, despite the advances in this field, accurate control of applied pressure on the body due remains a challenge due to vast population-scale anthropometric variability and intra-subjects variability in tissue softness, even if the actuators themselves are fully characterized. In this study, we begin to address these challenges by developing a novel size-adjustable SMA-based smart tourniquet capable of producing a controllable pressure for circumferential applications. The developed prototype was tested on an inflatable pressure cuff wrapped around a rigid cylinder. The thermal activation of SMA coils was achieved through Joule heating, and a microcontroller and a programmable power supply are used to provide the input signal. To control the compression force, a closed-loop PID controller was implemented, and the performance of the system was evaluated in 5 different testing conditions for variable and cyclic compression levels. The experiments showed that the controlled system could follow the desired control pressure reference with a steady-state of 1 mmHg. The compression tourniquet is able to produce more than 33 mmHg with an average actuation rate of 0.19 mmHg/s. This is the first demonstration of accurate closed-loop control of an SMA-incorporated compression technology to the best of our knowledge. This paper enables new, dynamic systems with controllable activation and low-effort donning and doffing, with applications ranging from healthcare solutions to advanced spacesuit design. 
    more » « less
  2. Abstract

    Textile-based compression devices are widely used in fields such as healthcare, astronautics, cosmetics, defense, and more. While traditional compression garments are only able to apply passive pressure on the body, there have been some efforts to integrate smart materials such as shape memory alloys (SMAs) to make compression garments active and controllable. However, despite the advances in this field, accurate control of applied pressure on the body due remains a challenge due to vast population-scale anthropometric variability and intra-subjects variability in tissue softness, even if the actuators themselves are fully characterized. In this study, we begin to address these challenges by developing a novel size-adjustable SMA-based smart tourniquet capable of producing a controllable pressure for circumferential applications. The developed prototype was tested on an inflatable pressure cuff wrapped around a rigid cylinder. The thermal activation of SMA coils was achieved through Joule heating, and a microcontroller and a programmable power supply are used to provide the input signal. To control the compression force, a closed-loop PID controller was implemented, and the performance of the system was evaluated in 5 different testing conditions for variable and cyclic compression levels. The experiments showed that the controlled system could follow the desired control pressure reference with a steady-state of 1 mmHg. The compression tourniquet is able to produce more than 33 mmHg with an average actuation rate of 0.19 mmHg/s. This is the first demonstration of accurate closed-loop control of an SMA-incorporated compression technology to the best of our knowledge. This paper enables new, dynamic systems with controllable activation and low-effort donning and doffing, with applications ranging from healthcare solutions to advanced spacesuit design.

     
    more » « less
  3. In the world of soft-robotic medical devices, there is a growing need for low profile, non-rigid, and lower power actuators for soft exoskeletons and dynamic compression garments. Advanced compression garments with integrated shape memory materials have been developed recently to alleviate the functional and usability limitations associated with traditional compression garments. These advanced garments use contractile shape memory alloy (SMA) coil actuators to produce dynamic compression on the body through selective heating of the SMA material. While these garments can create spatially- and temporally-controllable compression, typical SMA materials (e.g., 70°C Flexinol) consume considerable power and require considerable thermal insulation to protect the wearer during the heating phase of the SMA actuation. Alternative SMA materials (e.g., NiTi #8 by Fort Wayne Metals, Inc.) transform below room temperature and do so using no applied electrical power and generate no waste heat. However, these materials are challenging to dynamically control and require active refrigeration to reset to material. In theory, low-temperature SMA actuators made from materials like NiTi #8 may maintain additional dynamic actuation capacity once equilibrated to room temperature (i.e., the material may not fully transform), as the SMA phase transformation temperature window expands when the material experiences applied stress. This paper investigates this possibility: we manufactured and tested low-temperature NiTi coil actuators to determine the magnitude of the additional force that can be generated via Joule heating once the material has equilibrated to room temperature. SMA spring actuators made from NiTi #8 consumed 84% less power and stabilized at significantly lower temperatures (26.0°C vs. 41.2°C) than SMA springs made from 70°C Flexinol, when actuated at identically fixed displacements (100% nominal strain) and when driven to produce equal forces (∼3.35N). This demonstration of low-power, minimal-heat exposure SMA actuation holds promise for many future wearable actuation applications, including dynamic compression garments.

     
    more » « less
  4. This paper investigates the tradeoffs between design variables important for the development of a mobility support soft exoskeleton for horizontal shoulder adduction. The soft exoskeleton utilizes discreet shape memory alloy (SMA) spring actuators to generate the required torque to move the arm segment, while preserving the qualities of a soft, wearable garment solution. A pilot benchtop test involving varying power input, actuator anchor position, actuator orientation, and added weight, was investigated to evaluate their effects against the degree of motion the soft exoskeleton allows. The results show that the power input, actuator anchor position, and simulated limb weight each affect the ultimate horizontal adduction angle the exoskeleton is able to induce. Further, the project highlights a crucial point in regard to the tradeoffs between functionality and wearability: when actuator orientation was investigated, we found a decrement in functionality (as measured by maximum achievable horizontal adduction angle) when the actuators were constrained close to the body. This shows that when aiming to improve the hypothetical system’s wearability/usability, the effective torque that can be generated is reduced. Together these findings demonstrate important design considerations while developing a wearable, soft exoskeleton system that is capable of effectively supporting movement of the body while maintaining the comfort and discreetness of a regular garment.

     
    more » « less
  5. Abstract

    This work reports a three-dimensional polymer interdigitated pillar electrostatic actuator that can produce force densities 5–10× higher than those of biological muscles. The theory of operation, scaling, and stability is investigated using analytical and FEM models. The actuator consists of two high-density arrays of interdigitated pillars that work against a restoring force generated by an integrated flexure spring. The actuator architecture enables linear actuation with higher displacements and pull-in free actuation to prevent the in-use stiction associated with other electrostatic actuators. The pillars and springs are 3D printed together in the same structure. The pillars are coated with a gold–palladium alloy layer to form conductive electrodes. The space between the pillars is filled with liquid dielectrics for higher breakdown voltages and larger electrostatic forces due to the increase in the dielectric constant. We demonstrated a prototype actuator that produced a maximum work density of 54.6 µJ/cc and an electrical-to-mechanical energy coupling factor of 32% when actuated at 4000 V. The device was operated for more than 100,000 cycles with no degradation in displacements. The flexible polymer body was robust, allowing the actuator to operate even after high mechanical force impact, which was demonstrated by operation after drop tests. As it is scaled further, the reported actuator will enable soft and flexible muscle-like actuators that can be stacked in series and parallel to scale the resulting forces. This work paves the way for high-energy density actuators for microrobotic applications.

     
    more » « less