skip to main content


Title: Tensions in Enacting a Design Philosophy in UX Practice
Design culture is increasingly present within organizations, especially with the rise of UX as a profession. Yet there are often disconnects between the development of a design philosophy and its translation in practice. Students preparing for UX careers are positioned in a liminal space between their educational experience and future practice, and are actively working to build a bridge between their developing philosophy of design and the translation of that philosophy when faced with the complexity of design practice. In this study, we interviewed ten students and practitioners educated within design-oriented HCI programs, focusing on their design philosophy and evaluating how their philosophical beliefs were shaped in practice. Building on prior work on flows of competence, we thematically analyzed these interviews, identifying the philosophical beliefs of these designers and their trajectories of development, adoption, or suppression in industry. We identify opportunities for enhancements to UX educational practices and future research on design complexity in industry contexts.  more » « less
Award ID(s):
1909714 1657310
NSF-PAR ID:
10168533
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
DIS '20: Proceedings of the 2020 ACM on Designing Interactive Systems Conference
Page Range / eLocation ID:
2107 to 2118
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This contribution reports how the investigators are bridging across chemistry, philosophy, and other disciplines to study the landscape of ethics and responsible conduct (ERC) of research at the University of Central Florida (UCF) and to develop ongoing initiatives that cultivate a campus-wide culture of ERC in science. A multi-modal approach is employed to assess the ethics landscape at UCF, which is one of the most populated, rapidly emerging, minority-serving metropolitan universities in the United States. Stakeholders are consulted to develop new initiatives. In one example, the team created case-study driven workshops that help students discover through discussion how decision making and the sense of what is right can be affected by culture, discipline, past experience, and the availability or lack of information. Participants discuss topics closely related to chemistry -- including CRISPR, climate science, putative links between autism and vaccination, recalls related to vehicle emissions systems, and other examples from science, technology, and industry -- that help them understand how ERC impacts society at all levels and why it must be central to their professional practice. Philosophical arguments, like the Trolley Problem and normative theory, are used to focus students' thinking on the key value judgements that define the moral landscape and lead to ethical or unethical outcomes. The investigators are exploring means for bridging across hierarchies that are inherent in higher education -- and which create natural but often unhelpful divisions between students, faculty, staff, administrators, and alumni -- so that all stakeholders develop and contribute to a shared sense of ERC. The investigators examine how chemistry students engage with interdisciplinary colleagues and how faculty in chemistry and closely related disciplines are engaging with the initiatives. Advances in the assessment of ERC and the development of vehicles for promoting a culture of ERC are described. 
    more » « less
  2. null (Ed.)
    The development of professional engineers for the workforce is one of the aims of engineering education, which benefits from the complementary efforts of engineering students, faculty, and employers. Typically, current research on engineering competencies needed for practice in the workplace is focused on the experiences and perspectives of practicing engineers. This study aimed to build on this work by including the perspectives and beliefs of engineering faculty about preparing engineering students, as well as the perspectives and beliefs of engineering students about preparing for the workplace. The overall question of the research was, “What and how do engineering students learn about working in the energy sector?” Additional questions asked practicing engineers, “What is important to learn about your work and how did you learn what was important when you started in this industry? For engineering faculty, we asked, “What is important for students to learn as they prepare for work as professionals in the energy industry?” We anticipated that the findings of triangulating these three samples would help us better understand the nature of the preparation of engineering students for work by exploring the connections and disconnections between engineering education in school and engineering practice in the workplace. The aim was to map out the complex ecosystem of professional learning in the context of engineering education and practice. The core concept framing this study is the development of competence for engineering practice—including the education of students in the context of higher education and the practical learning of newly hired engineers on the job. Initial findings of the work-in-progress describe the nature of instruction and learning in higher education, learning in the workplace, along with comparisons and contrasts between the two. As of this point, we have initially mapped the learning ecosystem in the workplace based on in-depth, qualitative interviews with 12 newly hired engineers in the target energy company. In addition, we are analyzing interviews with two managers in the company and three other experienced leaders in the energy industry (this sample is currently in process and will include interviews with more participants). Currently, we are analyzing and mapping the learning and experiences of students in their studies of energy engineering and the instructional goals of engineering faculty teaching and mentoring these students. The map of the higher education ecosystem will connect with the workplace ecosystem to portray a more longitudinal map of the learning and development of professional competence of engineering students preparing for their career in the energy sector. The findings of the analysis of the workplace emphasized the importance of the social and relational systems in the workplace, while very preliminary indications from the educational context (students and faculty) indicate initial awareness of the social context of energy practice and policy. There are also indications of the nature of important cultural differences between higher education and industry. We continue to collect data and work on the analysis of data with the aim of mapping out the larger learning and experience ecosystem that leading to professional competence. 
    more » « less
  3. Cyclical models are often used to describe how students learn and develop. These models usually focus on the cognitive domain and describe how knowledge and skills are learned within a course or classroom. By providing insights into how students learn and thus how an instructor can support learning, these models and the schemas drawn from them also influence beliefs about learning and thus how educational programs are designed and developed. In this paper the authors present an alternative cyclical model of learning that is drawn from a philosophy of enactivism rather than rational dualism. In comparison with the dualism inherent in viewpoints derived from Descartes where learners construct internal mental representation from inputs received from the external world, in enactivism development occurs through continual dynamic interactions between an agent and their environment. Enactivism thus emphasizes the role environments play in learning and development. The model developed in this paper hypothesizes that the environment in which learning typically occurs can be represented by three elements: the learner’s identity and culture which informs personally significant goals and values; the affordances a degree program offers in areas of knowledge, identity, and context which informs the capabilities of the environment; and the implicit and explicit goals of education as they are negotiated and understood by learners and teachers. These three elements are strongly coupled and together define the ever-changing learning environment. The paper explores how changing technologies and cultures affect each of these three elements in regards to students’ ability to become technologically literate. While rational or dualist views of education see such environmental changes as peripheral to developing accurate representations of truth, enactivism posits that environment significantly affects the process of education. Because each student or faculty member is a participant in a learning organization changes within the organization—whether externally or internally driven—change the learning process. If education is deemed successful when students can transfer learning to new contexts, dualist models assume transfer is weakly coupled to educational environments while the enactivist viewpoint posits that environments strongly affect transfer. The enactivist model can inform efforts to encourage technological literacy. Like many areas in STEM, education technological literacy has sought to identify and support learning outcomes that specify effective teaching or content interventions which enable learners to become more technologically literate. From the enactivist perspective, however, technological literacy is achieved by placing individuals into an environment in which they must navigate technology-induced challenges, with success defined as learning processes that allow learners to manage tensions inherent in their environment. Because most students already live in such environments teaching definable or enumerable outcomes makes less sense than helping student to be metacognitive and reflective how they manage and relate with technology. 
    more » « less
  4. This NSF Grantees poster discusses an early phase Revolutionizing Engineering Departments (RED) project which is designed to address preparing engineering students to address large scale societal problems, the solutions of which integrate multiple disciplinary perspectives. These types of problems are often termed “convergent problems”. The idea of convergence captures how different domains of expertise contribute to solving a problem, but also the value of the network of connections between areas of knowledge that is built in undertaking such activities. While most existing efforts at convergence focus at the graduate and post-graduate levels, this project supports student development of capabilities to address convergent problems in an undergraduate disciplinary-based degree program in electrical and computer engineering. This poster discusses some of the challenges faced in implementing such learning including how to decouple engineering topics from societal concerns in ways that are relevant to undergraduate students yet retain aspects of convergence, negotiations between faculty on ways to balance discipline-specific skills with the breadth required for systemic understanding, and challenges in integrating relevant projects into courses with different faculty and instructional learning goals. One of the features of the project is that it builds on ideas from Communities of Transformation by basing activities on a coherent philosophical model that guides theories of change. The project has adopted Amartya Sen’s Development as Freedom or capabilities framework as the organizing philosophy. In this model the freedom for individuals to develop capabilities they value is viewed as both the means and end of development. The overarching goal of the project is then for students to build personalized frameworks based on their value systems which allow them to later address complex, convergent problems. Framework development by individual students is supported in the project through several activities: modifying grading practices to provide detailed feedback on skills that support convergence, eliciting self-narratives from students about their pathways through courses and projects with the goal of developing reflection, and carefully integrating educational software solutions that can reduce some aspects of faculty workload which is hypothesized to enable faculty to focus efforts on integrating convergent projects throughout the curriculum. The poster will present initial results on the interventions to the program including grading, software integration, projects, and narratives. The work presented will also cover an ethnographic study of faculty practices which serves as an early-stage baseline to calibrate longer-term changes. 
    more » « less
  5. Service-learning (SL) is a promising way to engage and support local communities, educate students as holistic citizens and professionals, and strengthen the connection between higher education and society. However, within engineering education, SL as a pedagogy often falls short of reaching its full potential as a transformational pedagogy. To further our understanding of why SL, in the context of engineering, remains limited, this research characterizes: 1) implicit beliefs about engineering in students’ descriptions of their SL experiences, and 2) the ways in which students’ beliefs manifest within the context of SL in engineering. Our data include rich, contextual descriptions of SL experiences, which enabled us to generate insight into students’ implicit beliefs about engineering and how they manifest in SL contexts. We used an inductive, qualitative approach to analyze focus group and interview data. We found that students predominantly draw on three implicit beliefs about engineering when engaged in SL experiences: (1) Engineering is predominantly technical, (2) Engineering requires deliverables or tangible products, and (3) Engineers are the best problem solvers. These beliefs often manifested problematically, such that they promote university-centered and apolitical SL practice, while reinforcing social hierarchy, leading to community exploitation in support of student development. This study produces empirical evidence that such implicit beliefs are a mechanism that limits the potential of SL by hindering community-centric and justice-oriented practice. However, some students demonstrated their ability to disrupt these beliefs, thereby showing the potential for SL as a pedagogy in engineering to surface implicit and counterproductive beliefs about engineering and achieve SL goals. The beliefs that are salient in SL and the concrete ways in which they manifest for students have implications for how SL is practiced in engineering and the experiences of both students and partner communities. These beliefs impact the extent to which the socio-political elements of the service are addressed, the extent to which SL is university- versus community-centric, and the quality and extent to which the engineering solution is aligned with social justice. The implications of these findings lead to recommendations for future research on how engineering educators might explicitly design SL curricula to identify, address, and dismantle problematic beliefs before they manifest in problematic ways in SL contexts. 
    more » « less