African Americans, Latinos/Latinas, and other traditionally underserved ethnic/racial groups are needed for the next generation of engineers, scientists, and STEM educators. Women of color (WOC), in particular, represent a tremendous untapped human capital that could further provide a much-needed diversity of perspective essential to sustain technological advantages and to promote positive academic climate. Recently engineering educators have questioned the STEM community commitment towards increasing the participation of WOC. Indeed, national reports of domestic students studying and completing STEM degrees show marginal improvement in broadening participation with significant lag in engineering, despite the known benefits of diversity. Therefore, more must be done by the STEM community to attract and retain WOC. For students of color, campus climate issues around race, class, and gender are critical components shaping their higher education learning environment. Research suggests hostile campus climates are associated with students of color leaving STEM fields before graduating. Such barriers can be more pronounced for WOC who often experience a “double bind” of race and gender marginalization when navigating the STEM culture. Therefore, it is important that educators understand experiences of WOC and what is needed to improve students’ experiences in order to minimize the performance gap in key indicators (e.g.,more »
Victims of Outcomes: Towards an Enactivist Model of Technological Literacy
Cyclical models are often used to describe how students learn and develop. These models usually focus on the cognitive domain and describe how knowledge and skills are learned within a course or classroom. By providing insights into how students learn and thus how an instructor can support learning, these models and the schemas drawn from them also influence beliefs about learning and thus how educational programs are designed and developed. In this paper the authors present an alternative cyclical model of learning that is drawn from a philosophy of enactivism rather than rational dualism. In comparison with the dualism inherent in viewpoints derived from Descartes where learners construct internal mental representation from inputs received from the external world, in enactivism development occurs through continual dynamic interactions between an agent and their environment. Enactivism thus emphasizes the role environments play in learning and development.
The model developed in this paper hypothesizes that the environment in which learning typically occurs can be represented by three elements: the learner’s identity and culture which informs personally significant goals and values; the affordances a degree program offers in areas of knowledge, identity, and context which informs the capabilities of the environment; and the implicit and explicit more »
- Award ID(s):
- 2022271
- Publication Date:
- NSF-PAR ID:
- 10356575
- Journal Name:
- American Society for Engineering Education Annual Conference and Exhibition
- Page Range or eLocation-ID:
- #37854
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
African Americans, Latinos/Latinas, and other traditionally underserved ethnic/racial groups are needed for the next generation of engineers, scientists, and STEM educators. Women of color (WOC), in particular, represent a tremendous untapped human capital that could further provide a much-needed diversity of perspective essential to sustain technological advantages and to promote positive academic climate. Recently engineering educators have questioned the STEM community commitment towards increasing the participation of WOC. Indeed, national reports of domestic students studying and completing STEM degrees show marginal improvement in broadening participation with significant lag in engineering, despite the known benefits of diversity. Therefore, more must be done by the STEM community to attract and retain WOC. For students of color, campus climate issues around race, class, and gender are critical components shaping their higher education learning environment. Research suggests hostile campus climates are associated with students of color leaving STEM fields before graduating. Such barriers can be more pronounced for WOC who often experience a “double bind” of race and gender marginalization when navigating the STEM culture. Therefore, it is important that educators understand experiences of WOC and what is needed to improve students’ experiences in order to minimize the performance gap in key indicators (e.g.,more »
-
The authors present the design and implementation of an exploratory virtual learning environment that assists children with autism (ASD) in learning science, technology, engineering, and mathematics (STEM) skills along with improving social-emotional and communication skills. The primary contribution of this exploratory research is how educational research informs technological advances in triggering a virtual AI companion (AIC) for children in need of social-emotional and communication skills development. The AIC adapts to students’ varying levels of needed support. This project began by using puppetry control (human-in-the-loop) of the AIC, assisting students with ASD in learning basic coding, practicing their social skills with the AIC, and attaining emotional recognition and regulation skills for effective communication and learning. The student is given the challenge to program a robot, Dash™, to move in a square. Based on observed behaviors, the puppeteer controls the virtual agent’s actions to support the student in coding the robot. The virtual agent’s actions that inform the development of the AIC include speech, facial expressions, gestures, respiration, and heart color changes coded to indicate emotional state. The paper provides exploratory findings of the first 2 years of this 5-year scaling-up research study. The outcomes discussed align with a common approach of researchmore »
-
Performing arts computing environments have received little attention in the educational sphere; yet, they offer opportunities for learners to validate their efforts, ideas, and skills through showcasing their work in a public-facing performance. In this work, we explore an out-of-school dance and computing educational program run by the organization, STEM From Dance. The organizational mission is to create an equitable learning experience for young women of color to engage with computing while exposing them to STEM careers. Through an analysis of eleven interviews with youth participants, instructors, and the executive director, we examine how the social, cultural, and political dimensions of the learning environment facilitate identity work in computing and dance. Our findings point to three primary activities used by the organization to promote equity: (1) providing psychological safety through a supportive community environment, (2) meaningfully engaging with learners’ social and cultural context through creative work with constructionist artifacts, and (3) actively promoting identity work as women of color in computing and STEM through both artifact work and community events. Applying the constructs of identity and psychological safety we explore the tensions and synergies of designing for equity in this performing arts and computing learning environment. We demonstrate how themore »
-
Designing a senior-level course that involves problem-based learning, including project completion task, is laborious and challenging. A well-designed project motivates the students to be self-learners and prepares them for future industrial or academic endeavors. The COVID-19 pandemic brought many challenges when instructions were forced to move either online or to a remote teaching/learning environment. Due to this rapid transition, delivery modes in teaching and learning modalities faced disruption making course design more difficult. The senior level Flight Controls course AME - 4513 is designed with Unmanned Aerial Systems (UAS) related projects for the students to have a better understanding of UAS usage on various applications in support of Advanced Technological Education (ATE) program. The purpose of this paper is to present the UAS lab modules in a junior level robotics lab, AME - 4802, which preceded the Flight Controls course in the school of Aerospace and Mechanical Engineering at the University of Oklahoma. Successfully completing the course project requires independent research and involves numerical simulations of UAS. The Robotics Lab course focuses on hands-on projects of robotic systems with an emphasis on semi-autonomous mobile robots, including an UAS introduction module. - The UAS module in the Robotics Lab class ismore »