Presents research investigating youth data literacy at the public library. The Data Literacy with, for, and by Youth project is framed by principles of participatory design, and asks, how might an informal STEM learning environment such as the public library, support the development of the skills, knowledge, and dispositions that young people need for them to take charge of their data lives, from data creation to data use – to be, in short, data literate. The problem of how to approach something as complex as data literacy in the voluntary drop-in setting of informal, after-school sites of learning - the public library being one such place - guides this study. The aim of the project is to design, build, test, and evolve theory and practice around informal data literacy education alongside youth, with the goal of building a holistic, humanistic, and youth-oriented model of data literacy which incorporates social-awareness, critical approaches, and “goodness of fit” into STEM learning about data.
more »
« less
Victims of Outcomes: Towards an Enactivist Model of Technological Literacy
Cyclical models are often used to describe how students learn and develop. These models usually focus on the cognitive domain and describe how knowledge and skills are learned within a course or classroom. By providing insights into how students learn and thus how an instructor can support learning, these models and the schemas drawn from them also influence beliefs about learning and thus how educational programs are designed and developed. In this paper the authors present an alternative cyclical model of learning that is drawn from a philosophy of enactivism rather than rational dualism. In comparison with the dualism inherent in viewpoints derived from Descartes where learners construct internal mental representation from inputs received from the external world, in enactivism development occurs through continual dynamic interactions between an agent and their environment. Enactivism thus emphasizes the role environments play in learning and development. The model developed in this paper hypothesizes that the environment in which learning typically occurs can be represented by three elements: the learner’s identity and culture which informs personally significant goals and values; the affordances a degree program offers in areas of knowledge, identity, and context which informs the capabilities of the environment; and the implicit and explicit goals of education as they are negotiated and understood by learners and teachers. These three elements are strongly coupled and together define the ever-changing learning environment. The paper explores how changing technologies and cultures affect each of these three elements in regards to students’ ability to become technologically literate. While rational or dualist views of education see such environmental changes as peripheral to developing accurate representations of truth, enactivism posits that environment significantly affects the process of education. Because each student or faculty member is a participant in a learning organization changes within the organization—whether externally or internally driven—change the learning process. If education is deemed successful when students can transfer learning to new contexts, dualist models assume transfer is weakly coupled to educational environments while the enactivist viewpoint posits that environments strongly affect transfer. The enactivist model can inform efforts to encourage technological literacy. Like many areas in STEM, education technological literacy has sought to identify and support learning outcomes that specify effective teaching or content interventions which enable learners to become more technologically literate. From the enactivist perspective, however, technological literacy is achieved by placing individuals into an environment in which they must navigate technology-induced challenges, with success defined as learning processes that allow learners to manage tensions inherent in their environment. Because most students already live in such environments teaching definable or enumerable outcomes makes less sense than helping student to be metacognitive and reflective how they manage and relate with technology.
more »
« less
- Award ID(s):
- 2022271
- PAR ID:
- 10356575
- Date Published:
- Journal Name:
- American Society for Engineering Education Annual Conference and Exhibition
- Page Range / eLocation ID:
- #37854
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
There is a critical need for research-based active learning instructional materials for the teaching and learning of STEM in online courses. Every year, hundreds of thousands of undergraduate non-science majors enroll in general education astronomy courses to fulfill their institution’s liberal arts requirements. When designing instructional materials for this population of learners, a central focus must be to help learners become more scientifically and data literate. As such, we developed a new, three-part, curricular model that was used to inform the creation of active-learning instructional materials designed for use in online courses. The instructional materials were designed to help introductory astronomy students engage meaningfully with science while simultaneously improving their data literacy self-efficacy (especially as it pertained to making evidence-based conclusions when presented with a variety of data representations). We conducted a pilot study of these instructional materials at nine different colleges and universities to better understand whether students’ engagement with these materials lead to improved beliefs and self-efficacy. The results of our student survey analysis showed statistically significant changes on survey items that assessed students’ beliefs about science engagement, citizen science, and their data literacy skills. Additionally, we assessed whether faculty who implemented these materials were able to easily incorporate them into existing online astronomy courses. The instructor feedback emphasized that our curriculum development model did successfully inform the creation of easy-to-implement instructional materials, generating the potential for widespread dissemination and use at the undergraduate level.more » « less
-
The demand is growing for a populace that is AI literate; such literacy centers on enabling individuals to evaluate, collaborate with, and effectively use AI. Because the middle school years are a critical time for developing youths’ perceptions and dispositions toward STEM, creating engaging AI learning experiences for middle grades students (ages 11 to 14) is paramount. The need for providing enhanced access to AI learning opportunities is especially pronounced in rural areas, which are typically underserved and underresourced. Inspired by prior research that game design holds significant potential for cultivating student interest and knowledge in computer science, we are designing, developing, and iteratively refining an AI-centered game development environment that infuses AI learning into game design activities. In this work, we review design principles for game design interventions focused on middle grades computer science education and explore how to introduce AI learning experiences into interactive game-design activities. We also discuss results from our initial co-design sessions with middle grades students and teachers in rural communities.more » « less
-
Having a STEM literate society, capable of questioning and being caring and compassionate citizens of the world is vital in a global society. This project utilized place-based education (PBE) and experiential learning, via a campus or community farm, to provide college students with contextual learning experiences that enhanced content knowledge, course engagement, critical thinking skills, and civic mindedness. The research in this paper focuses on the outcomes of a second year ecological biology course, at an urban institution, that integrated an approximately six week lesson incorporating the college’s urban farm. When compared to a control group, derived of students from the previous year, students in the treatment group had greater attachment to the farm, greater knowledge around civic activities, and statistically significant increases in scientific literacy skills.more » « less
-
Artificial intelligence (AI) has rapidly pervaded and reshaped almost all walks of life, but efforts to promote AI literacy in K-12 schools remain limited. There is a knowledge gap in how to prepare teachers to teach AI literacy in inclusive classrooms and how teacher-led classroom implementations can impact students. This paper reports a comparison study to investigate the effectiveness of an AI literacy curriculum when taught by classroom teachers. The experimental group included 89 middle school students who learned an AI literacy curriculum during regular school hours. The comparison group consisted of 69 students who did not learn the curriculum. Both groups completed the same pre and post-test. The results show that students in the experimental group developed a deeper understanding of AI concepts and more positive attitudes toward AI and its impact on future careers after the curriculum than those in the comparison group. This shows that the teacher-led classroom implementation successfully equipped students with a conceptual understanding of AI. Students achieved significant gains in recognizing how AI is relevant to their lives and felt empowered to thrive in the age of AI. Overall this study confirms the potential of preparing K-12 classroom teachers to offer AI education in classrooms in order to reach learners of diverse backgrounds and broaden participation in AI literacy education among young learners.more » « less
An official website of the United States government

