Few-shot fine-tuning of text-to-image (T2I) generation models enables people to create unique images in their own style using natural languages without requiring extensive prompt engineering. However, fine-tuning with only a handful, as little as one, of image-text paired data prevents fine-grained control of style attributes at generation. In this paper, we present FineStyle, a few-shot fine-tuning method that allows enhanced controllability for style personalized text-to-image generation. To overcome the lack of training data for fine-tuning, we propose a novel conceptoriented data scaling that amplifies the number of image-text pair, each of which focuses on different concepts (e.g., objects) in the style reference image. We also identify the benefit of parameter-efficient adapter tuning of key and value kernels of cross-attention layers. Extensive experiments show the effectiveness of FineStyle at following fine-grained text prompts and delivering visual quality faithful to the specified style, measured by CLIP scores and human raters.
more »
« less
Fine-grained Image-to-Image Transformation towards Visual Recognition
Existing image-to-image transformation approaches primarily focus on synthesizing visually pleasing data. Generating images with correct identity labels is challenging yet much less explored. It is even more challenging to deal with image transformation tasks with large deformation in poses, viewpoints, or scales while preserving the identity, such as face rotation and object viewpoint morphing. In this paper, we aim at transforming an image with a fine-grained category to synthesize new images that preserve the identity of the input image, which can thereby benefit the subsequent fine-grained image recognition and few-shot learning tasks. The generated images, transformed with large geometric deformation, do not necessarily need to be of high visual quality but are required to maintain as much identity information as possible. To this end, we adopt a model based on generative adversarial networks to disentangle the identity related and unrelated factors of an image. In order to preserve the fine-grained contextual details of the input image during the deformable transformation, a constrained nonalignment connection method is proposed to construct learnable highways between intermediate convolution blocks in the generator. Moreover, an adaptive identity modulation mechanism is proposed to transfer the identity information into the output image effectively. Extensive experiments on the CompCars and Multi-PIE datasets demonstrate that our model preserves the identity of the generated images much better than the state-of-the-art image-to-image transformation models, and as a result significantly boosts the visual recognition performance in fine-grained few-shot learning.
more »
« less
- Award ID(s):
- 1704337
- PAR ID:
- 10168534
- Date Published:
- Journal Name:
- IEEE Conference on Computer Vision and Pattern Recognition
- ISSN:
- 2163-6648
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Key recognition tasks such as fine-grained visual categorization (FGVC) have benefited from increasing attention among computer vision researchers. The development and evaluation of new approaches relies heavily on benchmark datasets; such datasets are generally built primarily with categories that have images readily available, omitting categories with insufficient data. This paper takes a step back and rethinks dataset construction, focusing on intelligent image collection driven by: (i) the inclusion of all desired categories, and, (ii) the recognition performance on those categories. Based on a small, author-provided initial dataset, the proposed system recommends which categories the authors should prioritize collecting additional images for, with the intent of optimizing overall categorization accuracy. We show that mock datasets built using this method outperform datasets built without such a guiding framework. Additional experiments give prospective dataset creators intuition into how, based on their circumstances and goals, a dataset should be constructed.more » « less
-
Recently, image-to-image translation (I2I) has met with great success in computer vision, but few works have paid attention to the geometric changes that occur during translation. The geometric changes are necessary to reduce the geometric gap between domains at the cost of breaking correspondence between translated images and original ground truth. We propose a novel geometry-aware semi-supervised method to preserve this correspondence while still allowing geometric changes. The proposed method takes a synthetic image-mask pair as input and produces a corresponding real pair. We also utilize an objective function to ensure consistent geometric movement of the image and mask through the translation. Extensive experiments illustrate that our method yields a 11.23% higher mean Intersection-Over-Union than the current methods on the downstream eye segmentation task. The generated image has a 15.9% decrease in Frechet Inception Distance indicating higher image quality.more » « less
-
Bebis, G. et (Ed.)In this paper, we extend the traditional few-shot learning (FSL) problem to the situation when the source-domain data is not accessible but only high-level information in the form of class prototypes is available. This limited information setup for the FSL problem deserves much attention due to its implication of privacy-preserving inaccessibility to the source-domain data but it has rarely been addressed before. Because of limited training data, we propose a non-parametric approach to this FSL problem by assuming that all the class prototypes are structurally arranged on a manifold. Accordingly, we estimate the novel-class prototype locations by projecting the few-shot samples onto the average of the subspaces on which the surrounding classes lie. During classification, we again exploit the structural arrangement of the categories by inducing a Markov chain on the graph constructed with the class prototypes. This manifold distance obtained using the Markov chain is expected to produce better results compared to a traditional nearest- neighbor-based Euclidean distance. To evaluate our proposed framework, we have tested it on two image datasets – the large-scale ImageNet and the small-scale but fine-grained CUB-200. We have also studied parameter sensitivity to better understand our framework.more » « less
-
Despite remarkable recent progress on both unconditional and conditional image synthesis, it remains a long-standing problem to learn generative models that are capable of synthesizing realistic and sharp images from reconfigurable spatial layout (i.e., bounding boxes + class labels in an image lattice) and style (i.e., structural and appearance variations encoded by latent vectors), especially at high resolution. By reconfigurable, it means that a model can preserve the intrinsic one-to-many mapping from a given layout to multiple plausible images with different styles, and is adaptive with respect to perturbations of a layout and style latent code. In this paper, we present a layout- and style-based architecture for generative adversarial networks (termed LostGANs) that can be trained end-to-end to generate images from reconfigurable layout and style. Inspired by the vanilla StyleGAN, the proposed LostGAN consists of two new components: (i) learning fine-grained mask maps in a weakly-supervised manner to bridge the gap between layouts and images, and (ii) learning object instance-specific layout-aware feature normalization (ISLA-Norm) in the generator to realize multi-object style generation. In experiments, the proposed method is tested on the COCO-Stuff dataset and the Visual Genome dataset with state-of-the-art performance obtained. The code and pretrained models are available at https://github.com/iVMCL/LostGANsmore » « less
An official website of the United States government

