Video Paragraph Captioning aims to generate a multi-sentence description of an untrimmed video with multiple temporal event locations in a coherent storytelling. Following the human perception process, where the scene is effectively understood by decomposing it into visual (e.g. human, animal) and non-visual components (e.g. action, relations) under the mutual influence of vision and language, we first propose a visual-linguistic (VL) feature. In the proposed VL feature, the scene is modeled by three modalities including (i) a global visual environment; (ii) local visual main agents; (iii) linguistic scene elements. We then introduce an autoregressive Transformer-in-Transformer (TinT) to simultaneously capture the semantic coherence of intra- and inter-event contents within a video. Finally, we present a new VL contrastive loss function to guarantee the learnt embedding features are consistent with the captions semantics. Comprehensive experiments and extensive ablation studies on the ActivityNet Captions and YouCookII datasets show that the proposed Visual-Linguistic Transformer-in-Transform (VLTinT) outperforms previous state-of-the-art methods in terms of accuracy and diversity. The source code is made publicly available at: https://github.com/UARK-AICV/VLTinT.
more »
« less
Exploiting Temporal Relationships in Video Moment Localization with Natural Language
We address the problem of video moment localization with natural language, i.e. localizing a video segment described by a natural language sentence. While most prior work focuses on grounding the query as a whole, temporal dependencies and reasoning between events within the text are not fully considered. In this paper, we propose a novel Temporal Compositional Modular Network (TCMN) where a tree attention network first automatically decomposes a sentence into three descriptions with respect to the main event, context event and temporal signal. Two modules are then utilized to measure the visual similarity and location similarity between each segment and the decomposed descriptions. Moreover, since the main event and context event may rely on different modalities (RGB or optical flow), we use late fusion to form an ensemble of four models, where each model is independently trained by one combination of the visual input. Experiments show that our model outperforms the state-of-the-art methods on the TEMPO dataset.
more »
« less
- Award ID(s):
- 1813709
- PAR ID:
- 10168540
- Date Published:
- Journal Name:
- ACM Multimedia Conference
- Page Range / eLocation ID:
- 1230 to 1238
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract This paper presents a procedure for and evaluation of using a semantic similarity metric as a loss function for neural source code summarization. Code summarization is the task of writing natural language descriptions of source code. Neural code summarization refers to automated techniques for generating these descriptions using neural networks. Almost all current approaches involve neural networks as either standalone models or as part of a pretrained large language models, for example, GPT, Codex, and LLaMA. Yet almost all also use a categorical cross‐entropy (CCE) loss function for network optimization. Two problems with CCE are that (1) it computes loss over each word prediction one‐at‐a‐time, rather than evaluating a whole sentence, and (2) it requires a perfect prediction, leaving no room for partial credit for synonyms. In this paper, we extend our previous work on semantic similarity metrics to show a procedure for using semantic similarity as a loss function to alleviate this problem, and we evaluate this procedure in several settings in both metrics‐driven and human studies. In essence, we propose to use a semantic similarity metric to calculate loss over the whole output sentence prediction per training batch, rather than just loss for each word. We also propose to combine our loss with CCE for each word, which streamlines the training process compared to baselines. We evaluate our approach over several baselines and report improvement in the vast majority of conditions.more » « less
-
null (Ed.)Traffic event retrieval is one of the important tasks for intelligent traffic system management. To find accurate candidate events in traffic videos corresponding to a specific text query, it is necessary to understand the text query's attributes, represent the visual and motion attributes of vehicles in videos, and measure the similarity between them. Thus we propose a promising method for vehicle event retrieval from a natural-language-based specification. We utilize both appearance and motion attributes of a vehicle and adapt the COOT model to evaluate the semantic relationship between a query and a video track. Experiments with the test dataset of Track 5 in AI City Challenge 2021 show that our method is among the top 6 with a score of 0.1560.more » « less
-
There has been substantial work in recent years on grounded language acquisition, in which a model is learned that relates linguistic constructs to the perceivable world. While powerful, this approach is frequently hindered by ambiguities and omissions found in natural language. One such omission is the lack of negative descriptions of objects. We describe an unsupervised system that learns visual classifiers associated with words, using semantic similarity to automatically choose negative examples from a corpus of perceptual and linguistic data. We evaluate the effectiveness of each stage as well as the system's performance on the overall learning task.more » « less
-
Localizing video moments based on the movement patterns of objects is an important task in video analytics. Existing video analytics systems offer two types of querying interfaces based on natural language and SQL, respectively. However, both types of interfaces have major limitations. SQL-based systems require high query specification time, whereas natural language-based systems require large training datasets to achieve satisfactory retrieval accuracy. To address these limitations, we present SketchQL, a video database management system (VDBMS) for offline, exploratory video moment retrieval that is both easy to use and generalizes well across multiple video moment datasets. To improve ease-of-use, SketchQL features avisual query interfacethat enables users to sketch complex visual queries through intuitive drag-and-drop actions. To improve generalizability, SketchQL operates on object-tracking primitives that are reliably extracted across various datasets using pre-trained models. We present a learned similarity search algorithm for retrieving video moments closely matching the user's visual query based on object trajectories. SketchQL trains the model on a diverse dataset generated with a novel simulator, that enhances its accuracy across a wide array of datasets and queries. We evaluate SketchQL on four real-world datasets with nine queries, demonstrating its superior usability and retrieval accuracy over state-of-the-art VDBMSs.more » « less