skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The DOI auto-population feature in the Public Access Repository (PAR) will be unavailable from 4:00 PM ET on Tuesday, July 8 until 4:00 PM ET on Wednesday, July 9 due to scheduled maintenance. We apologize for the inconvenience caused.


Title: Traffic Video Event Retrieval via Text Query using Vehicle Appearance and Motion Attributes
Traffic event retrieval is one of the important tasks for intelligent traffic system management. To find accurate candidate events in traffic videos corresponding to a specific text query, it is necessary to understand the text query's attributes, represent the visual and motion attributes of vehicles in videos, and measure the similarity between them. Thus we propose a promising method for vehicle event retrieval from a natural-language-based specification. We utilize both appearance and motion attributes of a vehicle and adapt the COOT model to evaluate the semantic relationship between a query and a video track. Experiments with the test dataset of Track 5 in AI City Challenge 2021 show that our method is among the top 6 with a score of 0.1560.  more » « less
Award ID(s):
2025234
PAR ID:
10277269
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
IEEE Computer Society Conference on Computer Vision and Pattern Recognition workshops
ISSN:
2160-7516
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Retrieving event videos based on textual description is a promising research topic in the fast-growing data field. Since traffic data increases every day, there is an essential need of an intelligent traffic system to speed up the traffic event search. We propose a multi-module system that outputs accurate results. Our solution considers neighboring entities related to the mentioned object to represent an event by rule-based, which can represent an event by the relationship of multiple objects. We also propose to add a modified model from last year's Alibaba model with an explainable architecture. As the traffic data is vehicle-centric, we apply two language and image modules to analyze the input data and obtain the global properties of the context and the internal attributes of the vehicle. We introduce a one-on-one dual training strategy for each representation vector to optimize the interior features for the query. Finally, a refinement module gathers previous results to enhance the final retrieval result. We benchmarked our approach on the data of the AI City Challenge 2022 and obtained the competitive results at an MMR of 0.3611. We were ranked in the top 4 on 50\% of the test set and in the top 5 on the full set. 
    more » « less
  2. Retrieving event videos based on textual description is a promising research topic in the fast-growing data field. Since traffic data increases every day, there is an essential need of an intelligent traffic system to speed up the traffic event search. We propose a multi-module system that outputs accurate results. Our solution considers neighboring entities related to the mentioned object to represent an event by rule-based, which can represent an event by the relationship of multiple objects. We also propose to add a modified model from last year's Alibaba model with an explainable architecture. As the traffic data is vehicle-centric, we apply two language and image modules to analyze the input data and obtain the global properties of the context and the internal attributes of the vehicle. We introduce a one-on-one dual training strategy for each representation vector to optimize the interior features for the query. Finally, a refinement module gathers previous results to enhance the final retrieval result. We benchmarked our approach on the data of the AI City Challenge 2022 and obtained the competitive results at an MMR of 0.3611. We were ranked in the top 4 on 50\% of the test set and in the top 5 on the full set. 
    more » « less
  3. As a part of road safety initiatives, surrogate road safety approaches have gained popularity due to the rapid advancement of video collection and processing technologies. This paper presents an end-to-end software pipeline for processing traffic videos and running a safety analysis based on surrogate safety measures. We developed algorithms and software to determine trajectory movement and phases that, when combined with signal timing data, enable us to perform accurate event detection and categorization in terms of the type of conflict for both pedestrian-vehicle and vehicle-vehicle interactions. Using this information, we introduce a new surrogate safety measure, “severe event,” which is quantified by multiple existing metrics such as time-to-collision (TTC) and post-encroachment time (PET) as recorded in the event, deceleration, and speed. We present an efficient multistage event filtering approach followed by a multi-attribute decision tree algorithm that prunes the extensive set of conflicting interactions to a robust set of severe events. The above pipeline was used to process traffic videos from several intersections in multiple cities to measure and compare pedestrian and vehicle safety. Detailed experimental results are presented to demonstrate the effectiveness of this pipeline. 
    more » « less
  4. In metropolitan areas with heavy transit demands, electric vehicles (EVs) are expected to be continuously driving without recharging downtime. Wireless Power Transfer (WPT) provides a promising solution for in-motion EV charging. Nevertheless, previous works are not directly applicable for the deployment of in-motion wireless chargers due to their different charging characteristics. The challenge of deploying in-motion wireless chargers to support the continuous driving of EVs in a metropolitan road network with the minimum cost remains unsolved. We propose CatCharger to tackle this challenge. By analyzing a metropolitan-scale dataset, we found that traffic attributes like vehicle passing speed, daily visit frequency at intersections (i.e., landmarks) and their variances are diverse, and these attributes are critical to in-motion wireless charging performance. Driven by these observations, we first group landmarks with similar attribute values using the entropy minimization clustering method, and select candidate landmarks from the groups with suitable attribute values. Then, we use the Kernel Density Estimator (KDE) to deduce the expected vehicle residual energy at each candidate landmark and consider EV drivers’ routing choice behavior in charger deployment. Finally, we determine the deployment locations by formulating and solving a multi-objective optimization problem, which maximizes vehicle traffic flow at charger deployment positions while guaranteeing the continuous driving of EVs at each landmark. Trace-driven experiments demonstrate that CatCharger increases the ratio of driving EVs at the end of a day by 12.5% under the same deployment cost. 
    more » « less
  5. With benefits of fast query speed and low storage cost, hashing-based image retrieval approaches have garnered considerable attention from the research community. In this paper, we propose a novel Error-Corrected Deep Cross Modal Hashing (CMH-ECC) method which uses a bitmap specifying the presence of certain facial attributes as an input query to retrieve relevant face images from the database. In this architecture, we generate compact hash codes using an end-to-end deep learning module, which effectively captures the inherent relationships between the face and attribute modality. We also integrate our deep learning module with forward error correction codes to further reduce the distance between different modalities of the same subject. Specifically, the properties of deep hashing and forward error correction codes are exploited to design a cross modal hashing framework with high retrieval performance. Experimental results using two standard datasets with facial attributes-image modalities indicate that our CMH-ECC face image retrieval model outperforms most of the current attribute-based face image retrieval approaches. 
    more » « less