skip to main content

Title: Synthesis and Characterization of SrFe x Mn 1–x (O,F) 3−δ Oxide (δ = 0 and 0.5) and Oxyfluoride Perovskite Films
We report the synthesis and characterization of as-grown SrFexMn1-xO2.5 epitaxial films, which were also subjected to post-growth oxidation and topotactic fluorination to obtain SrFexMn1-xO3 and SrFexMn1-xO(2.5-d)Fg films. We show how both the B-site cation and anion composition influence the structural, electronic, and optical properties of this family of perovskite materials. The Fe substitution of Mn in SrMnO2.5 gradually expands the c-axis parameter, as indicated by X-ray diffraction. With increasing x, the F content incorporated under identical fluorination conditions increases, reaching its maximum in SrFeO(2.5-d)Fg. In the compounds with mixed B-site occupation, the Fe 2p photoemission peaks are shifted upon fluorination while the Mn 2p peaks are not, suggesting inductive effects lead to asymmetric responses in how F alters the Mn and Fe bonds. Electronic transport measurements reveal all compounds are insulators, with the exception of SrFeO3, and demonstrate that fluorination increases resistivity for all values of x. Optical absorption spectra in the SrFexMn1-xO2.5 and SrFexMn1-xO3 films evolve systematically as a function of x, consistent with a physical scenario in which optical changes with Fe substitution arise from a linear combination of Mn and Fe 3d bands within the electronic structure. In contrast, the F incorporation induces non-linear changes to the more » optical response, suggesting a more complex impact on the electronic structure in materials with concurrent B-site and anion site substitution. « less
; ;
Award ID(s):
Publication Date:
Journal Name:
Inorganic Chemistry
Sponsoring Org:
National Science Foundation
More Like this
  1. Combining experimental and theoretical studies, we investigate the role of R-site (R = Y, Sm, Bi) element on the phase formation and thermal stability of R 2 (Mn 1−x Fe x ) 4 O 10−δ ( x = 0, 0.5, 1) mullite-type oxides. Our results show a distinct R-site dependent phase behavior for mullite-type oxides as Fe is substituted for Mn: 100% mullite-type phase was formed in (Y, Sm, Bi) 2 Mn 4 O 10 ; 55% and 18% of (Y, Sm) 2 Mn 2 Fe 2 O 10−δ was found when R = Y and Sm, respectively, for equal Fe and Mn molar concentrations in the reactants, whereas Bi formed 54% O10- and 42% O9-mixed mullite-type phases. Furthermore, when the reactants contain 100% Fe, no mullite-type phase was formed for R = Y and Sm, but a sub-group transition to Bi 2 Fe 4 O 9 O9-phase was found for R = Bi. Thermogravimetric analysis and density functional theory (DFT) calculation results show a decreasing thermal stability in O10-type structure with increasing Fe incorporation; for example, the decomposition temperature is 1142 K for Bi 2 Mn 2 Fe 2 O 10−δ vs. 1217 K for Bi 2 Mn 4more »O 10 . On the other hand, Bi 2 Fe 4 O 9 O9-type structure is found to be thermally stable up to 1227 K. These findings are explained by electronic structure calculations: (1) as Fe concentration increases, Jahn–Teller distortion results in mid band-gap empty states from unstable Fe 4+ occupied octahedra, which is responsible for the decrease in O10 structure stability; (2) the directional sp orbital hybridization unique to Bi effectively stabilizes the mullite-type structure as Fe replaces Mn.« less
  2. Recent work has demonstrated a low-temperature route to fabricating mixed ionic/electronic conducting (MIEC) thin films with enhanced oxygen exchange kinetics by crystallizing amorphous-grown thin films under mild temperatures, eluding conditions for deleterious A-site cation surface segregation. Yet, the complex, multiscale chemical and structural changes during MIEC crystallization and their implications for the electrical properties remain relatively unexplored. In this work, micro-structural and atomic-scale structural and chemical changes in crystallizing SrTi 0.65 Fe 0.35 O 3− δ thin films on insulating (0001)-oriented Al 2 O 3 substrates are observed and correlated to changes in the in-plane electrical conductivity, measured in situ by ac impedance spectroscopy. Synchrotron X-ray absorption spectroscopy at the Fe and Ti K-edges gives direct evidence of oxidation occurring with the onset of crystallization and insight into the atomic-scale structural changes driven by the chemical changes. The observed oxidation, increase in B-site polyhedra symmetry, and alignment of neighboring B-site cation coordination units demonstrate increases in both hole concentration and mobility, thus underpinning the measured increase of in-plane conductivity by over two orders of magnitude during crystallization. High resolution transmission electron microscopy and spectroscopy of films at various degrees of crystallinity reveal compositional uniformity with extensive nano-porosity in the crystallizedmore »films, consistent with solid phase contraction expected from both oxidation and crystallization. We suggest that this chemo-mechanically driven dynamic nano-structuring is an additional contributor to the observed electrical behavior. By the point that the films become ∼60% crystalline (according to X-ray diffraction), the conductivity reaches the value of dense, fully crystalline films. Given the resulting high electronic conductivity, this low-temperature processing route leading to semi-crystalline hierarchical films exhibits promise for developing high performance MIECs for low-to-intermediate temperature applications.« less
  3. Water electrolysis can use renewable electricity to produce green hydrogen, a portable fuel and sustainable chemical precursor. Improving electrolyzer efficiency hinges on the activity of the oxygen evolution reaction (OER) catalyst. Earth-abundant, ABO3-type perovskite oxides offer great compositional, structural, and electronic tunability, with previous studies showing compositional substitution can increase the OER activity drastically. However, the relationship between the tailored bulk composition and that of the surface, where OER occurs, remains unclear. Here, we study the effects of electrochemical cycling on the OER activity of La 0.5 Sr 0.5 Ni 1-x Fe x O 3-δ (x = 0-0.5) epitaxial films grown by oxide molecular beam epitaxy as a model Sr-containing perovskite oxide. Electrochemical testing and surface-sensitive spectroscopic analyses show Ni segregation, which is affected by electrochemical history, along with surface amorphization, coupled with changes in OER activity. Our findings highlight the importance of surface composition and electrochemical cycling conditions in understanding OER performance on mixed metal oxide catalysts, suggesting common motifs of the active surface with high surface area systems.
  4. Thermoelectric materials can convert heat into electricity. They are used to generate electricity when other power sources are not available or to increase energy efficiency by recycling waste heat. The Yb 21 Mn 4 Sb 18 phase was previously shown to have good thermoelectric performance due to its large Seebeck coefficient (∼290 μV K −1 ) and low thermal conductivity (0.4 W m −1 K −1 ). These characteristics stem respectively from the unique [Mn 4 Sb 10 ] 22− subunit and the large unit cell/site disorder inherent in this phase. The solid solutions, Yb 21 Mn 4− x Cd x Sb 18 ( x = 0, 0.5, 1.0, 1.5) and Yb 21− y Ca y Mn 4 Sb 18 ( y = 3, 6, 9, 10.5) have been prepared, their structures characterized and thermoelectric properties from room temperature to 800 K measured. A detailed look into the structural disorder for the Cd and Ca solid solutions was performed using synchrotron powder X-ray diffraction and pair distribution function methods and shows that these are highly disordered structures. The substitution of Cd gives rise to more metallic behavior whereas Ca substitution results in high resistivity. As both Cd and Ca aremore »isoelectronic substitutions, the changes in properties are attributed to changes in the electronic structure. Both solid solutions show that the thermal conductivities remain extremely low (∼0.4 W m −1 K −1 ) and that the Seebeck coefficients remain high (>200 μV K −1 ). The temperature dependence of the carrier mobility with increased Ca substitution, changing from approximately T −1 to T −0.5 , suggests that another scattering mechanism is being introduced. As the bonding changes from polar covalent with Yb to ionic for Ca, polar optical phonon scattering becomes the dominant mechanism. Experimental studies of the Cd solid solutions result in a max zT of ∼1 at 800 K and, more importantly for application purposes, a ZT avg ∼ 0.6 from 300 K to 800 K.« less
  5. We present structural, magnetic, and optical properties of hexagonal HoFeO3/Al2O3 thin films deposited by Magnetron Sputtering. The x-ray diffraction patterns of HoFeO3 thin films show the c-planes of a hexagonal structure. The magnetization data display an antiferromagnetic transition temperature, TN∼120 ± 5 K and the magnetization-field hysteresis loops were measured below 100 K, confirming a weak ferromagnetism arising from a spin canting of the Fe3+ moments. The magnetization data also show an anomaly around ∼40 K due to a spin-reorientation transition caused by the Ho3+- Fe3+ interactions. We observed comparable magnetization along the ab plane and c axis although the spin canting of Fe3+ sites has a preferential component along the c axis, suggesting that the Ho3+- Fe3+ interactions dominate in the low temperature magnetic structures of hexagonal-HoFeO3. The observed electronic excitations at ∼2.29, 2.87, 3.82, 4.79, and 6.53 eV have been assigned to the Fe3+ d to d on-site as well as O 2p to Fe 3d, Ho 6s, and 5d charge-transfer excitations, respectively. The room temperature energy band gap of the hexagonal-HoFeO3 thin film was measured to be ∼1.99 ± 0.04 eV.