skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Voltage Control of Patterned Metal/Insulator Properties in Oxide/Oxyfluoride Lateral Perovskite Heterostructures via Ion Gel Gating
Abstract Dynamic control of patterned properties in perovskite oxide films can enable new architectures for electronic, magnetic, and optical devices. In this study, it is shown that SrFeO3‐δ/SrFeO2F laterally‐heterostructured films enable voltage‐controlled tunable and reversible metal‐insulator patterned properties using room‐temperature ion gel gating. Specifically, SrFeO3‐δfilm regions can be toggled between insulating HxSrFeO2.5and metallic SrFeO3by electrochemical redox, while SrFeO2F regions remain robustly insulating and are unaffected by ion gel gating. Various gating architectures are also compared and establish the advantages of employing a conductive substrate as the contacting electrode, as opposed to at the film surface, thereby achieving complete and reversible reduction and oxidation among SrFeO3‐δ, HxSrFeO2.5, and SrFeO3. This approach to voltage‐modulated patterned electronic, optical, and magnetic properties should be broadly applicable to oxide materials amenable to fluoridation, and potentially other forms of anion substitution.  more » « less
Award ID(s):
2001888 2011401
PAR ID:
10443982
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
Volume:
32
Issue:
49
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Materials with tunable infrared refractive index changes have enabled active metasurfaces for novel control of optical circuits, thermal radiation, and more. Ion‐gel‐gated epitaxial films of the perovskite cobaltite La1−xSrxCoO3−δ(LSCO) with 0.00 ≤x≤ 0.70 offer a new route to significant, voltage‐tuned, nonvolatile refractive index modulation for infrared active metasurfaces, shown here through Kramers–Kronig‐consistent dispersion models, structural and electronic transport characterization, and electromagnetic simulations before and after electrochemical reduction. As‐grown perovskite films are high‐index insulators forx< 0.18 but lossy metals forx> 0.18, due to a percolation insulator‐metal transition. Positive‐voltage gating of LSCO transistors withx> 0.18 reveals a metal‐insulator transition from the metallic perovskite phase to a high‐index (n> 2.5), low‐loss insulating phase, accompanied by a perovskite to oxygen‐vacancy‐ordered brownmillerite transformation at highx. Atx< 0.18, despite nominally insulating character, the LSCO films undergo remarkable refractive index changes to another lower‐index, lower‐loss insulating perovskite state with Δn >0.6. In simulations of plasmonic metasurfaces, these metal‐insulator and insulator‐insulator transitions support significant, varied mid‐infrared reflectance modulation, thus framing electrochemically gated LSCO as a diverse library of room‐temperature phase‐change materials for applications including dynamic thermal imaging, camouflage, and optical memories. 
    more » « less
  2. CdO has drawn much recent interest as a high-room-temperature-mobility oxide semiconductor with exciting potential for mid-infrared photonics and plasmonics. Wide-range modulation of carrier density in CdO is of interest both for fundamental reasons (to explore transport mechanisms in single samples) and for applications (in tunable photonic devices). Here, we thus apply ion-gel-based electrolyte gating to ultrathin epitaxial CdO(001) films, using transport, x-ray diffraction, and atomic force microscopy to deduce a reversible electrostatic gate response from −4 to +2 V, followed by rapid film degradation at higher gate voltage. Further advancing the mechanistic understanding of electrolyte gating, these observations are explained in terms of low oxygen vacancy diffusivity and high acid etchability in CdO. Most importantly, the 6-V-wide reversible electrostatic gating window is shown to enable ten-fold modulation of the Hall electron density, a striking voltage-induced metal–insulator transition, and 15-fold variation of the electron mobility. Such modulations, which are limited only by unintentional doping levels in ultrathin films, are of exceptional interest for voltage-tunable devices. 
    more » « less
  3. Epitaxial cobaltites have emerged as exemplary materials for electrochemical gating, in large part due to their topotactic perovskite (P) ↔ brownmillerite (BM) transformations. SrCoO3−δ, for example, can be cycled between metallic ferromagnetic P SrCoO3 and insulating BM SrCoO2.5, realizing exceptional modulation of electronic, thermal, and optical properties. It is often presumed that such cycling also generates ferromagnetic–antiferromagnetic (F-AF) modulation due to the G-type AF order in bulk SrCoO2.5. Little is understood about magnetism in thin-film BM SrCoO2.5, however, meaning that the true magnetic property modulation is unclear. We address this here through a neutron diffraction study of BM La1−xSrxCoO2.5 films at x = 0.5 and 1.0. Lightly compressively strained SrCoO2.5 films are shown to retain G-type AF order, albeit with suppressed Néel temperature (∼340 K). Of high interest for AF spintronics, room-temperature F–AF cycling is thus possible across the SrCoO3-δ P ↔ BM transformation. At x = 0.5, however, BM La0.5Sr0.5CoO2.5 films are found to exhibit no detectable G-type AF order but instead weak F order (Curie temperature ∼115 K), unveiling a La0.5Sr0.5CoO3−δ phase diagram with two distinct F phases. These results thus uncover new, unanticipated magnetic phase behavior in these materials, in addition to being directly relevant to cobaltite-based magnetoionics. 
    more » « less
  4. ABSTRACT: Perovskite cobaltites have emerged as archetypes for electrochemical control of materials properties in electrolytegate devices. Voltage-driven redox cycling can be performed between fully oxygenated perovskite and oxygen-vacancy-ordered brownmillerite phases, enabling exceptional modulation of the crystal structure, electronic transport, thermal transport, magnetism, and optical properties. The vast majority of studies, however, have focused heavily on the perovskite and brownmillerite end points. In contrast, here we focus on hysteresis and reversibility across the entire perovskite ↔ brownmillerite topotactic transformation, combining gate-voltage hysteresis loops, minor hysteresis loops, quantitative operando synchrotron X-ray diffraction, and temperature-dependent (magneto)transport, on ion-gel-gated ultrathin (10-unit-cell) epitaxial La0.5Sr0.5CoO3−δ films. Gate-voltage hysteresis loops combined with operando diffraction reveal a wealth of new mechanistic findings, including asymmetric redox kinetics due to differing oxygen diffusivities in the two phases, nonmonotonic transformation rates due to the first-order nature of the transformation, and limits on reversibility due to first-cycle structural degradation. Minor loops additionally enable the first rational design of an optimal gate-voltage cycle. Combining this knowledge, we demonstrate state-of-the-art nonvolatile cycling of electronic and magnetic properties, encompassing >105 transport ON/OFF ratios at room temperature, and reversible metal−insulator−metal and ferromagnet−nonferromagnet−ferromagnet cycling, all at 10-unit-cell thickness with high room-temperature stability. This paves the way for future work to establish the ultimate cycling frequency and endurance of such devices. KEYWORDS: electrolyte gating, magnetoionics, complex oxides, perovskite−brownmillerite transformation, hysteresis, reversibility 
    more » « less
  5. We report the synthesis and characterization of as-grown SrFexMn1-xO2.5 epitaxial films, which were also subjected to post-growth oxidation and topotactic fluorination to obtain SrFexMn1-xO3 and SrFexMn1-xO(2.5-d)Fg films. We show how both the B-site cation and anion composition influence the structural, electronic, and optical properties of this family of perovskite materials. The Fe substitution of Mn in SrMnO2.5 gradually expands the c-axis parameter, as indicated by X-ray diffraction. With increasing x, the F content incorporated under identical fluorination conditions increases, reaching its maximum in SrFeO(2.5-d)Fg. In the compounds with mixed B-site occupation, the Fe 2p photoemission peaks are shifted upon fluorination while the Mn 2p peaks are not, suggesting inductive effects lead to asymmetric responses in how F alters the Mn and Fe bonds. Electronic transport measurements reveal all compounds are insulators, with the exception of SrFeO3, and demonstrate that fluorination increases resistivity for all values of x. Optical absorption spectra in the SrFexMn1-xO2.5 and SrFexMn1-xO3 films evolve systematically as a function of x, consistent with a physical scenario in which optical changes with Fe substitution arise from a linear combination of Mn and Fe 3d bands within the electronic structure. In contrast, the F incorporation induces non-linear changes to the optical response, suggesting a more complex impact on the electronic structure in materials with concurrent B-site and anion site substitution. 
    more » « less