skip to main content


Title: A New High-Pressure Phase Transition in Natural Gedrite
High-pressure diamond-anvil cell synchrotron X-ray diffraction experiments were conducted on single-crystal samples of natural orthoamphibole; gedrite; with composition; (K0.002Na0.394)(Mg2)(Mg1.637Fe2.245Mn0.004Ca0.022Cr0.003Na0.037Al1.052)(Si6.517Al1.483)O22(OH)2. The samples were compressed at 298 K up to a maximum pressure of 27(1) GPa. In this pressure regime, we observed a displacive phase transition between 15.1(7) and 21(1) GPa from the orthorhombic Pnma phase to a new structure with space group P21/m; which is different from the familiar P21/m structure of cummingtonite and retains the (+, +, −, −) I-beam stacking sequence of the orthorhombic structure. The unit cell parameters for the new phase at 21(1) GPa are a = 17.514(3), b = 17.077(1), c = 4.9907(2) Å and β = 92.882(6)°. The high-pressure P21/m phase is the first amphibole structure to show the existence of four crystallographically distinct silicate double chains. The orthorhombic to monoclinic phase transition is characterized by an increase in the degree of kinking of the double silicate chains and is analogous to displacive phase changes recently reported in orthopyroxenes, highlighting the parallel structural relations and phase transformation behavior of orthorhombic single- and double-chain silicates.  more » « less
Award ID(s):
1722969
NSF-PAR ID:
10168750
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Crystals
Volume:
9
Issue:
10
ISSN:
2073-4352
Page Range / eLocation ID:
521
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Two novel ternary compounds from the pseudobinary CH3NH3X–AgX (X = Br, I) phase diagrams are reported. CH3NH3AgBr2 and CH3NH3Ag2I3 were synthesized via solid state sealed tube reactions and the crystal structures were determined through a combination of single crystal and synchrotron X-ray powder diffraction. Structurally, both compounds consist of one-dimensional ribbons built from silvercentered tetrahedra. The structure of CH3NH3AgBr2 possesses orthorhombic Pnma symmetry and is made up of zig-zag chains where each silver bromide tetrahedron shares two edges with neighboring tetrahedra. The tetrahedral coordination of silver is retained in CH3NH3Ag2I3, which has monoclinic P21/m symmetry, but the change in stoichiometry leads to a greater degree of edge-sharing connectivity within the silver iodide chains. With band gaps of 3.3 eV (CH3NH3Ag2I3) and 4.0 eV (CH3NH3AgBr2) the absorption onsets of the ternary phases are significantly blue shifted from the binary silver halides, AgBr and AgI, due in part to the decrease in electronic dimensionality. The compounds are stable for at least one month under ambient conditions and are thermally stable up to approximately 200 1C. Density functional theory calculations reveal very narrow valence bands and moderately disperse conduction bands with Ag 5s character. Bond valence calculations are used to analyze the hydrogen bonding between methylammonium cations and coordinatively unsaturated halide ions. The crystal chemistry of these compounds helps to explain the dearth of iodide double perovskites in the literature.

     
    more » « less
  2. The high-pressure structure and stability of the calcic amphibole tremolite (Ca2Mg5Si8O22(OH)2) was investigated to ~40 GPa at 300 K by single-crystal X-ray diffraction using synchrotron radiation. C2/m symmetry tremolite displays a broader metastability range than previously studied clinoamphiboles, exhibiting no first-order phase transition up to 40 GPa. Axial parameter ratios a/b and a/c, in conjunction with finite strain versus normalized pressure trends, indicate that changes in compressional behavior occur at pressures of ~5 and ~20 GPa. An analysis of the finite strain trends, using third-order Birch-Murnaghan equations of state, resulted in bulk moduli (𝐾) of 72(7), 77(2), and 61(1) GPa for the compressional regimes from 0-5 GPa (regime I), 5-20 GPa (II), and above 20 GPa (III), respectively, and accompanying pressure-derivatives of the bulk moduli (𝐾′) of 8.6(42), 6.0(3), and 10.0(2). The results are consistent with first-principle theoretical calculations of tremolite elasticity. The axial compressibility ratios of tremolite, determined as 𝛽a : 𝛽b : 𝛽c = 2.22:1.0:0.78 (regime I), 2.12:1.0:0.96 (II), and 1.03:1.0:0.75 (III), demonstrate a substantial reduction of the compressional anisotropy of tremolite at high pressures, which is a notable contrast with the increasingly anisotropic compressibility observed in the high-pressure polymorphs of the clinoamphibole grunerite. The shift in compression-regime at 5 GPa (I-II) transition is ascribed to stiffening along the crystallographic a-axis corresponding to closure of the vacant A-site in the structure, and a shift in the topology of the a-oriented surfaces of the structural I-beam from concave to convex. The II-III regime shift at 20 GPa corresponds to an increasing rate of compaction of the Ca-polyhedra and increased distortion of the Mg-octahedral sites, processes which dictate compaction in both high-pressure compression-regimes. Bond-valence analyses of the tremolite structure under pressure show dramatic overbonding of the Ca-cations (75% at 30 GPa), with significant Mg-cation overbonding as well (40%). These imply that tremolite’s notable metastability range hinges on the calcium cation’s bonding environment. The 8-fold coordinated Ca-polyhedron accommodates significant compaction under pressure, while the geometry of the Ca-O polyhedron becomes increasingly regular and inhibits the reorientation of the tetrahedral chains that generate phase transitions observed in other clinoamphiboles. Peak/background ratio of diffraction data collected above 40 GPa and our equation of state determination of bulk moduli and compressibilities of tremolite in regime III, in concert with the results of our previous Raman study, suggest that C2/m tremolite may be approaching the limit of its metastability above 40 GPa. Our results have relevance for both the metastable compaction of tremolite during impact events, and for possible metastable persistence of tremolite within cold subduction zones within the Earth. 
    more » « less
  3. Abstract Hydrated sulfates have been identified and studied in a wide variety of environments on Earth, Mars, and the icy satellites of the solar system. The subsurface presence of hydrous sulfur-bearing phases to any extent necessitates a better understanding of their thermodynamic and elastic properties at pressure. End-member experimental and computational data are lacking and are needed to accurately model hydrous, sulfur-bearing planetary interiors. In this work, high-pressure X-ray diffraction (XRD) and synchrotron Fourier-transform infrared (FTIR) measurements were conducted on szomolnokite (FeSO4·H2O) up to ~83 and 24 GPa, respectively. This study finds a monoclinic-triclinic (C2/c to P1) structural phase transition occurring in szomolnokite between 5.0(1) and 6.6(1) GPa and a previously unknown triclinic-monoclinic (P1 to P21) structural transition occurring between 12.7(3) and 16.8(3) GPa. The high-pressure transition was identified by the appearance of distinct reflections in the XRD patterns that cannot be attributed to a second phase related to the dissociation of the P1 phase, and it is further characterized by increased H2O bonding within the structure. We fit third-order Birch-Murnaghan equations of state for each of the three phases identified in our data and refit published data to compare the elastic parameters of szomolnokite, kieserite (MgSO4·H2O), and blödite (Na2Mg(SO4)2·4H2O). At ambient pressure, szomolnokite is less compressible than blödite and more than kieserite, but by 7 GPa both szomolnokite and kieserite have approximately the same bulk modulus, while blödite’s remains lower than both phases up to 20 GPa. These results indicate the stability of szomolnokite’s high-pressure monoclinic phase and the retention of water within the structure up to pressures found in planetary deep interiors. 
    more » « less
  4. Abstract

    Super‐Earths ranging up to 10 Earth masses (ME) with Earth‐like density are common among the observed exoplanets thus far, but their measured masses and radii do not uniquely elucidate their internal structure. Exploring the phase transitions in the Mg‐silicates that define the mantle‐structure of super‐Earths is critical to characterizing their interiors, yet the relevant terapascal conditions are experimentally challenging for direct structural analysis. Here we investigated the crystal chemistry of Fe3O4as a low‐pressure analog to Mg2SiO4between 45–115 GPa and up to 3000 K using powder and single crystal X‐ray diffraction in the laser‐heated diamond anvil cell. Between 60–115 GPa and above 2000 K, Fe3O4adopts an 8‐fold coordinated Th3P4‐type structure (I‐43d,Z = 4) with disordered Fe2+and Fe3+into one metal site. This Fe‐oxide phase is isostructural with that predicted for Mg2SiO4above 500 GPa in super‐Earth mantles and suggests that Mg2SiO4can incorporate both ferric and ferrous iron at these conditions. The pressure‐volume behavior observed in this 8‐fold coordinated Fe3O4indicates a maximum 4% density increase across the 6‐ to 8‐fold coordination transition in the analog Mg‐silicate. Reassessment of the FeO—Fe3O4fugacity buffer considering the Fe3O4phase relationships identified in this study reveals that increasing pressure and temperature to 120 GPa and 3000 K in Earth and planetary mantles drives iron toward oxidation.

     
    more » « less
  5. null (Ed.)
    Exotic perovskites significantly enrich materials for multiferroic and magnetoelectric applications. However, their design and synthesis is a challenge due to the mostly required recipe conditions at extremely high pressure. Herein, we presented the Ca 2−x Mn x MnTaO 6 (0 ≤ x ≤ 1.0) solid solutions stabilized by chemical pressure assisted with intermediate physical pressure up to 7 GPa. The incorporation of Mn 2+ into the A-site neither drives any cationic ordering nor modifies the orthorhombic Pbnm structure, namely written as (Ca 1−x/2 Mn x/2 )(Mn 1/2 Ta 1/2 )O 3 with disordered A and B site cationic arrangements. The increment of x is accompanied by a ferromagnetic to antiferromagnetic transition around x = 0.2, which is attributed to the double-exchange interactions between A-site Mn 2+ and B-site Mn 3+ . Partial charge disproportionation of the B-site Mn 3+ into Mn 2+ and Mn 4+ occurs for x above 0.8 samples as manifested by X-ray spectrum and magnetic behaviors. The coexistence of B-site Mn 3+ (Jahn–Teller distortion ion) and B′-site Ta 5+ (second-order Jahn–Teller distortion ion) could be energetically responsible for the absence of A-site columnar ordering as observed in other quadruple perovskites with half of the A-sites occupied by small transition-metal cations. These exceptional findings indicate that exotic perovskites can be successfully stabilized at chemical and intermediate physical pressure, and the presence of Jahn–Teller distortion cations at the same lattice should be avoided to enable cationic ordering. 
    more » « less