skip to main content


Title: A new representation of disease conditions and treatment pathways accurately predicts mortality and chronic diseases
In this study, we introduce a novel representation of patient data called Disease Severity Hierarchy (DSH) that explores specific diseases and their known treatment pathways in a nested fashion to create subpopulations in a clinically meaningful way. As the DSH tree is traversed from the root towards the leaves, we encounter subpopulations that share increasing richer amounts of clinical details such as similar disease severity, illness trajectories, and time to event that are discriminative, and suitable for learning risk stratification models. The proposed DSH risk scores effectively and accurately predict the age at which a patient may be at risk of dying or developing MCE significantly better than a traditional representation of disease conditions. DSH utilizes known relationships among various entities in EHR data to capture disease severity in a natural way and has the additional benefit of being expressive and interpretable. This novel patient representation can help support critical decision making, development of smart EBP guidelines, and enhance healthcare care and disease management by helping to identify and reduce disease burden among high-risk patients.  more » « less
Award ID(s):
1602394
NSF-PAR ID:
10168838
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
AMIA 2019 Annual Symposium
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This study focuses on understanding the transcriptional heterogeneity of activated platelets and its impact on diseases such as sepsis, COVID-19, and systemic lupus erythematosus (SLE). Recognizing the limited knowledge in this area, our research aims to dissect the complex transcriptional profiles of activated platelets to aid in developing targeted therapies for abnormal and pathogenic platelet subtypes. We analyzed single-cell transcriptional profiles from 47,977 platelets derived from 413 samples of patients with these diseases, utilizing Deep Neural Network (DNN) and eXtreme Gradient Boosting (XGB) to distinguish transcriptomic signatures predictive of fatal or survival outcomes. Our approach included source data annotations and platelet markers, along with SingleR and Seurat for comprehensive profiling. Additionally, we employed Uniform Manifold Approximation and Projection (UMAP) for effective dimensionality reduction and visualization, aiding in the identification of various platelet subtypes and their relation to disease severity and patient outcomes. Our results highlighted distinct platelet subpopulations that correlate with disease severity, revealing that changes in platelet transcription patterns can intensify endotheliopathy, increasing the risk of coagulation in fatal cases. Moreover, these changes may impact lymphocyte function, indicating a more extensive role for platelets in inflammatory and immune responses. This study identifies crucial biomarkers of platelet heterogeneity in serious health conditions, paving the way for innovative therapeutic approaches targeting platelet activation, which could improve patient outcomes in diseases characterized by altered platelet function.

     
    more » « less
  2. Through the COVID-19 pandemic, SARS-CoV-2 has gained and lost multiple mutations in novel or unexpected combinations. Predicting how complex mutations affect COVID-19 disease severity is critical in planning public health responses as the virus continues to evolve. This paper presents a novel computational framework to complement conventional lineage classification and applies it to predict the severe disease potential of viral genetic variation. The transformer-based neural network model architecture has additional layers that provide sample embeddings and sequence-wide attention for interpretation and visualization. First, training a model to predict SARS-CoV-2 taxonomy validates the architecture’s interpretability. Second, an interpretable predictive model of disease severity is trained on spike protein sequence and patient metadata from GISAID. Confounding effects of changing patient demographics, increasing vaccination rates, and improving treatment over time are addressed by including demographics and case date as independent input to the neural network model. The resulting model can be interpreted to identify potentially significant virus mutations and proves to be a robust predctive tool. Although trained on sequence data obtained entirely before the availability of empirical data for Omicron, the model can predict the Omicron’s reduced risk of severe disease, in accord with epidemiological and experimental data. 
    more » « less
  3. Abstract

    Sickle cell disease (SCD) is the most prevalent inherited blood disorder in the world. But the clinical manifestations of the disease are highly variable. In particular, it is currently difficult to predict the adverse outcomes within patients with SCD, such as, vasculopathy, thrombosis, and stroke. Therefore, for most effective and timely interventions, a predictive analytic strategy is desirable. In this study, we evaluate the endothelial and prothrombotic characteristics of blood outgrowth endothelial cells (BOECs) generated from blood samples of SCD patients with known differences in clinical severity of the disease. We present a method to evaluate patient‐specific vaso‐occlusive risk by combining novel RNA‐seq and organ‐on‐chip approaches. Through differential gene expression (DGE) and pathway analysis we find that BOECs from SCD patients exhibit an activated state through cell adhesion molecule (CAM) and cytokine signaling pathways among many others. In agreement with clinical symptoms of patients, DGE analyses reveal that patient with severe SCD had a greater extent of endothelial activation compared to patient with milder symptoms. This difference is confirmed by performing qRT‐PCR of endothelial adhesion markers like E‐selectin, P‐selectin, tissue factor, and Von Willebrand factor. Finally, the differential regulation of the proinflammatory phenotype is confirmed through platelet adhesion readouts in our BOEC vessel‐chip. Taken together, we hypothesize that these easily blood‐derived endothelial cells evaluated through RNA‐seq and organ‐on‐chips may serve as a biotechnique to predict vaso‐occlusive episodes in SCD patients and will ultimately allow better therapeutic interventions.

     
    more » « less
  4. Abstract Extreme heat events are one of the deadliest weather-related hazards in the United States and are increasing in frequency and severity as a result of anthropogenic greenhouse gas emissions. Further, some subpopulations may be more vulnerable than others because of social, economic, and political factors that create disparities in hazard impacts and responses. Vulnerability is also affected by risk perceptions, which can influence protective behaviors. In this study, we use national survey data to investigate the association of key sociodemographic factors with public risk perceptions of heatwaves. We find that risk perceptions are most associated with income, race/ethnicity, gender, and disability status. Age, an important predictor of heat mortality, had smaller associations with heat risk perceptions. Low-income, nonwhite, and disabled individuals tend to perceive themselves to be at greater risks from heatwaves than other subpopulations, corresponding to their elevated risk. Men have lower risk perceptions than women despite their higher mortality and morbidity from heat. This study helps to identify subpopulations in the United States who see themselves as at risk from extreme heat and can inform heat risk communication and other risk reduction practices. 
    more » « less
  5. Accurate prediction and monitoring of patient health in the intensive care unit can inform shared decisions regarding appropriateness of care delivery, risk-reduction strategies, and intensive care resource use. Traditionally, algorithmic solutions for patient outcome prediction rely solely on data available from electronic health records (EHR). In this pilot study, we explore the benefits of augmenting existing EHR data with novel measurements from wrist-worn activity sensors as part of a clinical environment known as the Intelligent ICU. We implemented temporal deep learning models based on two distinct sources of patient data: (1) routinely measured vital signs from electronic health records, and (2) activity data collected from wearable sensors. As a proxy for illness severity, our models predicted whether patients leaving the intensive care unit would be successfully or unsuccessfully discharged from the hospital. We overcome the challenge of small sample size in our prospective cohort by applying deep transfer learning using EHR data from a much larger cohort of traditional ICU patients. Our experiments quantify added utility of non-traditional measurements for predicting patient health, especially when applying a transfer learning procedure to small novel Intelligent ICU cohorts of critically ill patients. 
    more » « less