skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Data-Driven Energy and Population Estimation for Real-Time City-Wide Energy Footprinting
Energy footprinting has the potential to raise awareness of energy consumption and lead to energy saving behavior. However, current methods are largely restricted to single buildings; these methods require energy and occupancy monitoring sensor deployments, which can be expensive and difficult to deploy at scale. Further, current methods for estimating energy consumption and population cannot provide fine enough temporal or spatial granularity for a reasonable personal energy footprint estimate. In this work, we present CityEnergy, a data-driven system for city-wide estimation of personal energy footprints. CityEnergy takes advantage of existing sensing infrastructure and data sources in urban cities to provide energy and population estimates at the building level, even in built environments that do not have existing or accessible energy or population data.  more » « less
Award ID(s):
1815274 1704899 1943396
PAR ID:
10168840
Author(s) / Creator(s):
;
Date Published:
Journal Name:
ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation
Page Range / eLocation ID:
267 to 276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Energy footprinting has the potential to raise awareness of energy consumption and lead to energy-saving behavior. However, current methods are largely restricted to single buildings; these methods require energy and occupancy monitoring sensor deployments, which can be expensive and difficult to deploy at scale. Further, current methods for estimating energy consumption and population at scale cannot provide fine enough temporal or spatial granularity for a reasonable personal energy footprint estimate. In this work, we present a data-driven system for city-wide estimation of personal energy footprints. This system takes advantage of existing sensing infrastructure and data sources in urban cities to provide energy and population estimates at the building level, even in built environments that do not have existing or accessible energy or population data. 
    more » « less
  2. ABSTRACT With renewable energy being aggressively integrated into the grid, energy supplies are becoming vulnerable to weather and the environment, and are often incapable of meeting population demands at a large scale if not accurately predicted for energy planning. Understanding consumers' power demands ahead of time and the influences of weather on consumption and generation can help producers generate effective power management plans to support the target demand. In addition to the high correlation with the environment, consumers' behaviors also cause non‐stationary characteristics of energy data, which is the main challenge for energy prediction. In this survey, we perform a review of the literature on prediction methods in the energy field. So far, most of the available research encompasses one type of generation or consumption. There is no research approaching prediction in the energy sector as a whole and its correlated features. We propose to address the energy prediction challenges from both consumption and generation sides, encompassing techniques from statistical to machine learning techniques. We also summarize the work related to energy prediction, electricity measurements, challenges related to energy consumption and generation, energy forecasting methods, and real‐world energy forecasting resources, such as datasets and software solutions for energy prediction. This article is categorized under:Application Areas > Industry Specific ApplicationsTechnologies > PredictionTechnologies > Machine Learning 
    more » « less
  3. Adaptive bitrate (ABR) algorithms play a critical role in video streaming by making optimal bitrate decisions in dynamically changing network conditions to provide a high quality of experience (QoE) for users. However, most existing ABRs suffer from limitations such as predefined rules and incorrect assumptions about streaming parameters. They often prioritize higher bitrates and ignore the corresponding energy footprint, resulting in increased energy consumption, especially for mobile device users. Additionally, most ABR algorithms do not consider perceived quality, leading to suboptimal user experience. This article proposes a novel ABR scheme called GreenABR+, which utilizes deep reinforcement learning to optimize energy consumption during video streaming while maintaining high user QoE. Unlike existing rule-based ABR algorithms, GreenABR+ makes no assumptions about video settings or the streaming environment. GreenABR+ model works on different video representation sets and can adapt to dynamically changing conditions in a wide range of network scenarios. Our experiments demonstrate that GreenABR+ outperforms state-of-the-art ABR algorithms by saving up to 57% in streaming energy consumption and 57% in data consumption while providing up to 25% more perceptual QoE due to up to 87% less rebuffering time and near-zero capacity violations. The generalization and dynamic adaptability make GreenABR+ a flexible solution for energy-efficient ABR optimization. 
    more » « less
  4. Homes constitute a large fraction of the total energy consumption. Producing an energy breakdown for a home has been shown to reduce household energy consumption by up to 15%, among other benefits. However, existing approaches to produce an energy breakdown require hardware to be installed in each home and are thus prohibitively expensive. In this paper, we propose a novel application of feature-based matrix factorisation that does not require any additional hardware installation. The basic premise of our approach is that common design and construction patterns for homes create a repeating structure in their energy data. Thus, a sparse basis can be used to represent energy data from a broad range of homes. We evaluate our approach on 516 homes from a publicly available data set and find it to be better than five baseline approaches that either require sensing in each home, or a very rigorous survey across a large number of homes coupled with complex modelling. We also present a deployment of our system as a live web application that can potentially provide energy breakdown to millions of homes. 
    more » « less
  5. Among various elements of urban infrastructure, there is significant opportunity to improve existing buildings’ sustainability, considering that approximately 40% of the total primary energy consumption and 72% of electricity consumption in United States is consumed by the building sector. Many different efforts focus on reducing the energy consumption of residential buildings. Data-validated building energy modeling methods serve the role of supporting this effort, by enabling the identification of the potential savings associated with different potential retrofit strategies. However there are many uncertainties that can impact the accuracy of energy model results, one of which is the weather input data. Measured weather data inputs located at each building can help address this concern, however, weather station data collection for each building is also costly and typically not feasible. Some weather station data is already collected, however, these are generally located at airports rather than near buildings, and thus do not capture local, spatially-varying weather conditions which are documented to occur, particularly in urban areas. In this study we address the impact of spatial temperature differences on residential building energy use. An energy model was developed in EnergyPlus for a residential building located in Mueller neighborhood of Austin, TX, and was validated using actual hourly measured electricity consumption. Using the validated model, the impact of measured spatial temperature differences on building energy consumption were investigated using multiple weather stations located throughout the urban area with different urban fractions. The results indicate that energy consumption of a residential building in a city with a 10% higher urban fraction would increase by approximately 10%. This variation in energy consumption is likely due to the impact of UHI effects occurring in urban areas with high densities. 
    more » « less