skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Matrix Factorisation for Scalable Energy Breakdown
Homes constitute a large fraction of the total energy consumption. Producing an energy breakdown for a home has been shown to reduce household energy consumption by up to 15%, among other benefits. However, existing approaches to produce an energy breakdown require hardware to be installed in each home and are thus prohibitively expensive. In this paper, we propose a novel application of feature-based matrix factorisation that does not require any additional hardware installation. The basic premise of our approach is that common design and construction patterns for homes create a repeating structure in their energy data. Thus, a sparse basis can be used to represent energy data from a broad range of homes. We evaluate our approach on 516 homes from a publicly available data set and find it to be better than five baseline approaches that either require sensing in each home, or a very rigorous survey across a large number of homes coupled with complex modelling. We also present a deployment of our system as a live web application that can potentially provide energy breakdown to millions of homes.  more » « less
Award ID(s):
1646501
PAR ID:
10039453
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the ... AAAI Conference on Artificial Intelligence
ISSN:
2159-5399
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Residential homes constitute roughly one-fourth of the total energy usage worldwide. Providing appliance-level energy breakdown has been shown to induce positive behavioral changes that can reduce energy consumption by 15%. Existing approaches for energy breakdown either require hardware installation in every target home or demand a large set of energy sensor data available for model training. However, very few homes in the world have installed sub-meters (sensors measuring individual appliance energy); and the cost of retrofitting a home with extensive sub-metering eats into the funds available for energy saving retrofits. As a result, strategically deploying sensing hardware to maximize the reconstruction accuracy of sub-metered readings in non-instrumented homes while minimizing deployment costs becomes necessary and promising. In this work, we develop an active learning solution based on low-rank tensor completion for energy breakdown. We propose to actively deploy energy sensors to appliances from selected homes, with a goal to improve the prediction accuracy of the completed tensor with minimum sensor deployment cost. We empirically evaluate our approach on the largest public energy dataset collected in Austin, Texas, USA, from 2013 to 2017. The results show that our approach gives better performance with fixed number of sensors installed, when compared to the state-of-the-art, which is also proven by our theoretical analysis. 
    more » « less
  2. Homes constitute roughly one-third of the total energy usage worldwide. Providing an energy breakdown – energy consumption per appliance, can help save up to 15% energy. Given the vast differences in energy consumption patterns across different regions, existing energy breakdown solutions require instrumentation and model training for each geographical region, which is prohibitively expensive and limits the scalability. In this paper, we propose a novel region independent energy breakdown model via statistical transfer learning. Our key intuition is that the heterogeneity in homes and weather across different regions most significantly impacts the energy consumption across regions; and if we can factor out such heterogeneity, we can learn region independent models or the homogeneous energy breakdown components for each individual appliance. Thus, the model learnt in one region can be transferred to another region. We evaluate our approach on two U.S. cities having distinct weather from a publicly available dataset. We find that our approach gives better energy breakdown estimates requiring the least amount of instrumented homes from the target region, when compared to the state-of-the-art. 
    more » « less
  3. Air leakages pose a major problem in both residential and commercial buildings. They increase the utility bill and result in excessive usage of Heating Ventilation and Air Conditioning (HVAC) systems, which impacts the environment and causes discomfort to residents. Repairing air leakages in a building is an expensive and time intensive task. Even detecting the leakages can require extensive professional testing. In this paper, we propose a method to identify the leaky homes from a set, provided their energy consumption data is accessible from residential smart meters. In the first phase, we employ a Non-Intrusive Load Monitoring (NILM) technique to disaggregate the HVAC data from total power consumption for several homes. We propose a recurrent neural network and a denoising autoencoder based approach to identify the 'ON' and 'OFF' cycles of the HVACs and their overall usages. We categorize the typical HVAC consumption of about 200 homes and any probable insulation and leakage problems using the Air Changes per Hour at 50 Pa (ACH50) metric in the Dataport datasets. We perform our proposed NILM analysis on different granularities of smart meter data such as 1 min, 15 mins, and 1 hour to observe its effect on classifying the leaky homes. Our results show that disaggregation can be used to identify the residential air-conditioning, at 1 min granularity which in turn helps us to identify the leaky potential homes, with an accuracy of 86%. 
    more » « less
  4. The use of audio and video modalities for Human Activity Recognition (HAR) is common, given the richness of the data and the availability of pre-trained ML models using a large corpus of labeled training data. However, audio and video sensors also lead to significant consumer privacy concerns. Researchers have thus explored alternate modalities that are less privacy-invasive such as mmWave doppler radars, IMUs, motion sensors. However, the key limitation of these approaches is that most of them do not readily generalize across environments and require significant in-situ training data. Recent work has proposed cross-modality transfer learning approaches to alleviate the lack of trained labeled data with some success. In this paper, we generalize this concept to create a novel system called VAX (Video/Audio to 'X'), where training labels acquired from existing Video/Audio ML models are used to train ML models for a wide range of 'X' privacy-sensitive sensors. Notably, in VAX, once the ML models for the privacy-sensitive sensors are trained, with little to no user involvement, the Audio/Video sensors can be removed altogether to protect the user's privacy better. We built and deployed VAX in ten participants' homes while they performed 17 common activities of daily living. Our evaluation results show that after training, VAX can use its onboard camera and microphone to detect approximately 15 out of 17 activities with an average accuracy of 90%. For these activities that can be detected using a camera and a microphone, VAX trains a per-home model for the privacy-preserving sensors. These models (average accuracy = 84%) require no in-situ user input. In addition, when VAX is augmented with just one labeled instance for the activities not detected by the VAX A/V pipeline (~2 out of 17), it can detect all 17 activities with an average accuracy of 84%. Our results show that VAX is significantly better than a baseline supervised-learning approach of using one labeled instance per activity in each home (average accuracy of 79%) since VAX reduces the user burden of providing activity labels by 8x (~2 labels vs. 17 labels). 
    more » « less
  5. With the acceleration of ICT technologies and the Internet of Things (IoT) paradigm, smart residential environments , also known as smart homes are becoming increasingly common. These environments have significant potential for the development of intelligent energy management systems, and have therefore attracted significant attention from both academia and industry. An enabling building block for these systems is the ability of obtaining energy consumption at the appliance-level. This information is usually inferred from electric signals data (e.g., current) collected by a smart meter or a smart outlet, a problem known as appliance recognition . Several previous approaches for appliance recognition have proposed load disaggregation techniques for smart meter data. However, these approaches are often very inaccurate for low consumption and multi-state appliances. Recently, Machine Learning (ML) techniques have been proposed for appliance recognition. These approaches are mainly based on passive MLs, thus requiring pre-labeled data to be trained. This makes such approaches unable to rapidly adapt to the constantly changing availability and heterogeneity of appliances on the market. In a home setting scenario, it is natural to consider the involvement of users in the labeling process, as appliances’ electric signatures are collected. This type of learning falls into the category of Stream-based Active Learning (SAL). SAL has been mainly investigated assuming the presence of an expert , always available and willing to label the collected samples. Nevertheless, a home user may lack such availability, and in general present a more erratic and user-dependent behavior. In this paper, we develop a SAL algorithm, called K -Active-Neighbors (KAN), for the problem of household appliance recognition. Differently from previous approaches, KAN jointly learns the user behavior and the appliance signatures. KAN dynamically adjusts the querying strategy to increase accuracy by considering the user availability as well as the quality of the collected signatures. Such quality is defined as a combination of informativeness , representativeness , and confidence score of the signature compared to the current knowledge. To test KAN versus state-of-the-art approaches, we use real appliance data collected by a low-cost Arduino-based smart outlet as well as the ECO smart home dataset. Furthermore, we use a real dataset to model user behavior. Results show that KAN is able to achieve high accuracy with minimal data, i.e., signatures of short length and collected at low frequency. 
    more » « less