skip to main content


Title: The Five I’s: A Framework for Supporting Early Career Faculty
This theory paper describes the development and use of a framework for supporting early career faculty development, especially in competitive National Science Foundation (NSF) CAREER proposals. Engineering Education Research (EER) has developed into a field of expertise and a career pathway over the past three decades. In response to numerous reports in the 1990s and early 2000s, multiple EER graduate programs were established in the mid-2000s and a growing number continue to emerge to educate and train the next generation of EER faculty and policy makers. Historically, many came to EER as individuals trained in other disciplines, but with an interest in improving teaching and learning. This approach created an interdisciplinary space where many could learn the norms, practices, and language of EER, as they became scholars. This history combined with the emergence of EER as a discipline with academic recognition; specific knowledge, frameworks, methodologies, and ways of conducting research; and particular emphasis and goals, creates a tension for building capacity to continue to develop EER and also include engineering education researchers who have not completed PhDs in an engineering education program. If EER is to continue to develop and emerge as a strong and robust discipline with high quality engineering education research, support mechanisms must be developed to both recognize outstanding EER scholars and develop the next generation of researchers in the field. The Five I’s framework comes from a larger project on supporting early career EER faculty in developing NSF CAREER proposals. Arguably, a NSF CAREER award is significant external recognition of EER that signals central membership in the community. The Five I’s were developed using collaborative inquiry, a tool and process to inform practice, with 19 EER CAREER awardees during a retreat in March 2019. The Five I’s include: Ideas, Integration, Impact, Identity, and Infrastructure. Ideas is researchers’ innovative and potentially transformative ideas that can make a significant contribution to EER. All NSF proposals are evaluated using the criteria of intellectual merit and broader impacts, and ideas aligned with these goals are essential for funding success. The integration of research and education is a specific additional consideration of CAREER proposals. Both education and research must inform one another in the proposal process. Demonstrating the impact of research is essential to convey why research should be funded. This impact is essential to address as it directly relates to the NSF criteria of broader impacts as well as why an individual is positioned to carry out that impact. This positioning is tied to identity or the particular research expertise from which a faculty member will be a leader in the field. Finally, infrastructure includes the people and physical resources from which a faculty member must draw to be successful. This framework has proven useful in helping early career faculty evaluate their readiness to apply for an NSF CAREER award or highlight the particular areas of their development that could be improved for future success.  more » « less
Award ID(s):
1837808
NSF-PAR ID:
10169044
Author(s) / Creator(s):
;
Date Published:
Journal Name:
American Society for Engineering Education Annual Conference & Exposition
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    As the field of engineering education continues to evolve, the number of early career scholars who identify as members of the discipline will continue to increase. These engineering education scholars will need to take strategic and intentional actions towards their professional goals and the goals of the engineering education community to be impactful within their positions. In other words, they must exercise agency. Accordingly, the purpose of this study is to investigate how the agency of early career, engineering education scholars manifests across different contexts. Our overarching research question is: How do institutional, individual, and disciplinary field and societal features influence early career engineering education faculty member’s agency to impact engineering education in their particular positions? To investigate how faculty agency manifests across different contexts, we adopted a longitudinal research approach to focus on our own experiences as engineering education scholars. Due to the complexity of the phenomenon, more common approaches to qualitative research (e.g., interviews, surveys, etc.) were unlikely to illuminate the manifestation of agency, which requires capturing the nuances associated with one’s day-to-day experiences. Thus, to address our research purpose, we required a research design that provided a space to explore one’s acceptance of ambiguity, responses to disappointments, willingness to adapt, process of adapting, and experiences with collaboration. The poster presented will provide a preliminary version of the model along with a detailed description of the methods used to develop it. In short, we integrated collaborative inquiry and collaborative autoethnography as a means for building our model. Autoethnography is a research approach that critically examines personal experience to explore a cultural phenomenon. Collaborative autoethnography, which leverages collective sense-making of the data, informed the structure of our data collection. Specifically, we documented our individual experiences over the course of six semesters by (1) completing weekly, monthly, pre-semester, and post-semester reflection questions; (2) participating in periodic activities and discussions focused on targeted areas of our theoretical framework and relevant literature; and (3) discussing the outcomes from both (1) and (2) in weekly meetings. Collaborative inquiry, in contrast to collaborative autoethnography, is a research approach where people pair reflection on practice with action through multiple inquiry cycles. Collaborative inquiry guided the topics of discussion within our weekly meetings and how we approached challenges and other aspects of our positions. The combination of these methodologies allowed us to deeply and systematically explore our own experiences, allowing us to develop a model of professional agency towards change in engineering education through collaborative sense-making. By sharing our findings with current and developing engineering education graduate programs, we will enable them to make programmatic changes to benefit current and future engineering education scholars. These findings also will provide a mechanism for divisions within ASEE to develop programming and resources to support the sustained success and impact of their members. 
    more » « less
  2. This research category full paper explores National Science Foundation (NSF) Faculty Early Career Development (CAREER) Program awardees from the Division of Engineering Education and Centers. The NSF CAREER Award distinguishes researchers as promising future leaders who are advancing the frontier of engineering education research (EER). Additionally, the multidisciplinary rise of EER has resulted in a diverse community of researchers from many backgrounds and academic departments. Given the recognition associated with the CAREER award, it is crucial that all early career faculty members possess the knowledge and support to create high quality CAREER applications. In this study, we investigated the educational backgrounds, institutional affiliation, and public abstracts of CAREER awardees to document prevailing patterns in recognition through CAREER awards. This knowledge informs future work to provide additional support for early career faculty planning on applying to the program. 
    more » « less
  3. This research paper describes the development of a critical incident-centered analysis methodology based on Schlossberg’s Transition Theory to explore transitions experienced by engineering education researchers as they begin new faculty positions. Understanding the transition experiences of scholars aiming to impact change within engineering education is important for identifying approaches to support the sustained success of these scholars at their institutions and within engineering education more broadly. To date, efforts to better prepare future faculty for academic roles have primarily focused on preparing them to be independent researchers, to teach undergraduate courses, and to support their ability to advance their career. Research of early career faculty is similarly limited in scope, focusing mostly on new faculty at research-exclusive universities or on faculty member’s teaching and research practices. To address this gap in the literature, our research team is examining the role of institutional context on the agency of early career engineering education faculty as it relates to facilitating change. As part of this larger project, the focus of this paper is on the integration of critical incident techniques and Schlossberg’s Transition Theory to create “incident timelines” that explore the transition of early career engineering education researchers into new faculty positions. Our paper will illustrate how this integration provided an effective methodology to: 1) explore a diverse set of transitions into faculty positions, 2) identify critical events that impact these transitions, 3) isolate strategies that supported the faculty members in different aspects of their transitions, and 4) examine connections between events and strategies over time and across faculty members’ transitions. Transition Theory provides a lens to explore how individuals identify and adapt based on transitions in their lives. An individual’s transition, according to Schlossberg, tends to include three phases: moving in, moving through, and moving out. Over the course of those phases, the individual’s experiences are influenced by the context of the transition, the characteristics of the individual such as their motivations and beliefs, the extent to which they have support, and the strategies they utilize. Given the complexity of a transition into a faculty position, it was necessary to determine the extent to which particular events and the relationship between events impacted a new faculty member’s experience. To accomplish this, we integrated a critical incident analysis to specifically investigate individual events that were considered significant to the overall transition leading to the development of an incident timeline. We applied our approach to monthly reflections of six new engineering faculty members from diverse institutional contexts who identify as engineering education researchers. The monthly reflections asked each participant to provide their impressions of the faculty role, in what ways they felt like a faculty member, and in what ways they did not. Through an iterative data analysis process, we developed initial incident timelines for each participant’s transition. Follow-up interviews with the participants allowed us to explore each event in more detail and provided an opportunity for reflection-on-action by the participant. These incidents were then further explored to distinguish strategies used and support received. Finally, we examined connections between events and strategies over time to identify overarching themes common to these types of faculty transitions. In this methods paper, we will demonstrate the usefulness of this variation of the critical incident approach for exploring complex professional transitions by highlighting the details of our incident timeline analysis. 
    more » « less
  4. This research paper describes the development of a critical incident-centered analysis methodology based on Schlossberg’s Transition Theory to explore transitions experienced by engineering education researchers as they begin new faculty positions. Understanding the transition experiences of scholars aiming to impact change within engineering education is important for identifying approaches to support the sustained success of these scholars at their institutions and within engineering education more broadly. To date, efforts to better prepare future faculty for academic roles have primarily focused on preparing them to be independent researchers, to teach undergraduate courses, and to support their ability to advance their career. Research of early career faculty is similarly limited in scope, focusing mostly on new faculty at research-exclusive universities or on faculty member’s teaching and research practices. To address this gap in the literature, our research team is examining the role of institutional context on the agency of early career engineering education faculty as it relates to facilitating change. As part of this larger project, the focus of this paper is on the integration of critical incident techniques and Schlossberg’s Transition Theory to create “incident timelines” that explore the transition of early career engineering education researchers into new faculty positions. Our paper will illustrate how this integration provided an effective methodology to: 1) explore a diverse set of transitions into faculty positions, 2) identify critical events that impact these transitions, 3) isolate strategies that supported the faculty members in different aspects of their transitions, and 4) examine connections between events and strategies over time and across faculty members’ transitions. Transition Theory provides a lens to explore how individuals identify and adapt based on transitions in their lives. An individual’s transition, according to Schlossberg, tends to include three phases: moving in, moving through, and moving out. Over the course of those phases, the individual’s experiences are influenced by the context of the transition, the characteristics of the individual such as their motivations and beliefs, the extent to which they have support, and the strategies they utilize. Given the complexity of a transition into a faculty position, it was necessary to determine the extent to which particular events and the relationship between events impacted a new faculty member’s experience. To accomplish this, we integrated a critical incident analysis to specifically investigate individual events that were considered significant to the overall transition leading to the development of an incident timeline. We applied our approach to monthly reflections of six new engineering faculty members from diverse institutional contexts who identify as engineering education researchers. The monthly reflections asked each participant to provide their impressions of the faculty role, in what ways they felt like a faculty member, and in what ways they did not. Through an iterative data analysis process, we developed initial incident timelines for each participant’s transition. Follow-up interviews with the participants allowed us to explore each event in more detail and provided an opportunity for reflection-on-action by the participant. These incidents were then further explored to distinguish strategies used and support received. Finally, we examined connections between events and strategies over time to identify overarching themes common to these types of faculty transitions. In this methods paper, we will demonstrate the usefulness of this variation of the critical incident approach for exploring complex professional transitions by highlighting the details of our incident timeline analysis. 
    more » « less
  5. CONTEXT Engineering education is an interdisciplinary research field where scholars are commonly embedded within the context they study. Engineering Education Scholars (EES), individuals who define themselves by having expertise associated with both engineering education research and practice, inhabit an array of academic positions, depending on their priorities, interests, and desired impact. These positions include, but are not limited to, traditional tenure-track faculty positions, professional teaching or research positions, and positions within teaching and learning centers or other centers. EES also work in diverse institutional contexts, including engineering disciplinary departments, first-year programs, and engineering education departments, which further vary their roles. PURPOSE OR GOAL The purpose of this preliminary research study is to better understand the roles and responsibilities of early-career EES. This knowledge will enable PhD programs to better prepare engineering education graduates to more intentionally seek positions, which is especially important given the growing number of engineering education PhD programs. We address our purpose by exploring the following research question: How can we describe the diversity of academic or faculty roles early-career EES undertake? APPROACH OR METHODOLOGY/METHODS We implemented an explanatory sequential mixed-methods study starting with a survey (n=59) to better understand the strategic actions of United States-based early-career EES. We used a clustering technique to identify clusters of participants based on these actions (e.g., teaching focused priorities, research goals). We subsequently recruited 14 survey participants, representing each of the main clusters, to participate in semi-structured interviews. Through the interviews, we sought to gain a more nuanced understanding of each participant’s actions in the contexts of their roles and responsibilities. We analyzed each interview transcript to develop memos providing an overview of each early-career EES role description and then used a cross case analysis where the unit of analysis was a cluster. ACTUAL OUTCOMES Five main clusters were identified through our analysis, with three representing primarily research-focused day-to-day responsibilities and two representing primarily teaching-focused day-to-day responsibilities. The difference between the clusters was influenced by the institutional context and the areas in which EES selected to focus their roles and responsibilities. These results add to our understanding of how early-career EES enact their roles within different institutional contexts and positions. CONCLUSIONS/RECOMMENDATIONS/SUMMARY This work can be used by graduate programs around the world to better prepare their engineering education graduates for obtaining positions that align with their goals and interests. Further, we expect this work to provide insight to institutions so that they can provide the support and resources to enable EES to reach their desired impact within their positions. 
    more » « less