skip to main content


Title: Template-stabilized oxidic nickel oxygen evolution catalysts

Earth-abundant oxygen evolution catalysts (OECs) with extended stability in acid can be constructed by embedding active sites within an acid-stable metal-oxide framework. Here, we report stable NiPbOxfilms that are able to perform oxygen evolution reaction (OER) catalysis for extended periods of operation (>20 h) in acidic solutions of pH 2.5; conversely, native NiOxcatalyst films dissolve immediately. In situ X-ray absorption spectroscopy and ex situ X-ray photoelectron spectroscopy reveal that PbO2is unperturbed after addition of Ni and/or Fe into the lattice, which serves as an acid-stable, conductive framework for embedded OER active centers. The ability to perform OER in acid allows the mechanism of Fe doping on Ni catalysts to be further probed. Catalyst activity with Fe doping of oxidic Ni OEC under acid conditions, as compared to neutral or basic conditions, supports the contention that role of Fe3+in enhancing catalytic activity in Ni oxide catalysts arises from its Lewis acid properties.

 
more » « less
NSF-PAR ID:
10169246
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Proceedings of the National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
117
Issue:
28
ISSN:
0027-8424
Page Range / eLocation ID:
p. 16187-16192
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The development of efficient and robust earth‐abundant electrocatalysts for the oxygen evolution reaction (OER) is an ongoing challenge. Here, a novel and stable trimetallic NiFeCr layered double hydroxide (LDH) electrocatalyst for improving OER kinetics is rationally designed and synthesized. Electrochemical testing of a series of trimetallic NiFeCr LDH materials at similar catalyst loading and electrochemical surface area shows that the molar ratio Ni:Fe:Cr = 6:2:1 exhibits the best intrinsic OER catalytic activity compared to other NiFeCr LDH compositions. Furthermore, these nanostructures are directly grown on conductive carbon paper for a high surface area 3D electrode that can achieve a catalytic current density of 25 mA cm−2at an overpotential as low as 225 mV and a small Tafel slope of 69 mV dec−1in alkaline electrolyte. The optimized NiFeCr catalyst is stable under OER conditions and X‐ray photoelectron spectroscopy, electron paramagnetic resonance spectroscopy, and elemental analysis confirm the stability of trimetallic NiFeCr LDH after electrochemical testing. Due to the synergistic interactions among the metal centers, trimetallic NiFeCr LDH is significantly more active than NiFe LDH and among the most active OER catalysts to date. This work also presents general strategies to design more efficient metal oxide/hydroxide OER electrocatalysts.

     
    more » « less
  2. Water splitting has been widely considered to be an efficient way to generate sustainable and renewable energy resources in fuel cells, metal–air batteries and other energy conversion devices. Exploring efficient electrocatalysts to expedite the anodic oxygen evolution reaction (OER) is a crucial task that needs to be addressed in order to boost the practical application of water splitting. Intensive efforts have been devoted to develop mixed transition metal based chalcogenides as effective OER electrocatalysts. Herein, we have reported synthesis of a series of mixed metal selenides containing Co, Ni and Cu employing combinatorial electrodeposition, and systematically investigated how the transition metal doping affects the OER catalytic activity in alkaline medium. Energy dispersive spectroscopy (EDS) was performed to detect the elemental compositions and confirm the feasibility of compositional control of 66 metal selenide thin films. It was observed that the OER catalytic activity is sensitive to the concentration of Cu in the catalysts, and the catalyst activity tended to increase with increasing Cu concentration. However, increasing the Cu concentration beyond a certain limit led to decrease in catalytic efficiency, and copper selenide by itself, although catalytically active, showed higher onset potential and overpotential for OER compared to the ternary and quaternary mixed metal selenides. Interestingly, the best quaternary composition (Co 0.21 Ni 0.25 Cu 0.54 ) 3 Se 2 showed similar crystal structure as its parent compound of Cu 3 Se 2 with slight decrease in lattice spacings of (101) and (210) lattice planes (0.0222 Å and 0.0148 Å, respectively) evident from the powder X-ray diffraction pattern. (Co 0.21 Ni 0.25 Cu 0.54 ) 3 Se 2 thin film exhibited excellent OER catalytic activity and required an overpotential of 272 mV to reach a current density of 10 mA cm −2 , which is 54 mV lower than Cu 3 Se 2 , indicating a synergistic effect of transition metal doping in enhancing catalytic activity. 
    more » « less
  3. Water electrolysis can use renewable electricity to produce green hydrogen, a portable fuel and sustainable chemical precursor. Improving electrolyzer efficiency hinges on the activity of the oxygen evolution reaction (OER) catalyst. Earth-abundant, ABO3-type perovskite oxides offer great compositional, structural, and electronic tunability, with previous studies showing compositional substitution can increase the OER activity drastically. However, the relationship between the tailored bulk composition and that of the surface, where OER occurs, remains unclear. Here, we study the effects of electrochemical cycling on the OER activity of La 0.5 Sr 0.5 Ni 1-x Fe x O 3-δ (x = 0-0.5) epitaxial films grown by oxide molecular beam epitaxy as a model Sr-containing perovskite oxide. Electrochemical testing and surface-sensitive spectroscopic analyses show Ni segregation, which is affected by electrochemical history, along with surface amorphization, coupled with changes in OER activity. Our findings highlight the importance of surface composition and electrochemical cycling conditions in understanding OER performance on mixed metal oxide catalysts, suggesting common motifs of the active surface with high surface area systems. 
    more » « less
  4. Abstract

    Photoelectrodes without a p–n junction are often limited in efficiency by charge recombination at semiconductor surfaces and slow charge transfer to electrocatalysts. This study reports that tin oxide (SnOx) layers applied to n‐Si wafers after forming a thin chemically oxidized SiOxlayer can passivate the Si surface while producing ≈620 mV photovoltage under 100 mW cm−2of simulated sunlight. The SnOxlayer makes ohmic contacts to Ni, Ir, or Pt films that act as precatalysts for the oxygen‐evolution reaction (OER) in 1.0mKOH(aq) or 1.0mH2SO4(aq). Ideal regenerative solar‐to‐O2(g) efficiencies of 4.1% and 3.7%, respectively, are obtained in 1.0mKOH(aq) with Ni or in 1.0mH2SO4(aq) with Pt/IrOxlayers as OER catalysts. Stable photocurrents for >100 h are obtained for electrodes with patterned catalyst layers in both 1.0mKOH(aq) and 1.0mH2SO4(aq).

     
    more » « less
  5. Abstract

    Noble metals supported on reducible oxides, like CoOxand TiOx, exhibit superior activity in many chemical reactions, but the origin of the increased activity is not well understood. To answer this question we studied thin films of CoOxsupported on an Au(111) single crystal surface as a model for the CO oxidation reaction. We show that three reaction regimes exist in response to chemical and topographic restructuring of the CoOxcatalyst as a function of reactant gas phase CO/O2stoichiometry and temperature. Under oxygen-lean conditions and moderate temperatures (≤150 °C), partially oxidized films (CoOx<1) containing Co0were found to be efficient catalysts. In contrast, stoichiometric CoO films containing only Co2+form carbonates in the presence of CO that poison the reaction below 300 °C. Under oxygen-rich conditions a more oxidized catalyst phase (CoOx>1) forms containing Co3+species that are effective in a wide temperature range. Resonant photoemission spectroscopy (ResPES) revealed the unique role of Co3+sites in catalyzing the CO oxidation. Density function theory (DFT) calculations provided deeper insights into the pathway and free energy barriers for the reactions on these oxide phases. These findings in this work highlight the versatility of catalysts and their evolution to form different active phases, both topological and chemically, in response to reaction conditions exposing a new paradigm in the catalyst structure during operation.

     
    more » « less