skip to main content


Title: Beyond NP: Quantifying over Answer Sets
Abstract Answer Set Programming (ASP) is a logic programming paradigm featuring a purely declarative language with comparatively high modeling capabilities. Indeed, ASP can model problems in NP in a compact and elegant way. However, modeling problems beyond NP with ASP is known to be complicated, on the one hand, and limited to problems in $\[\Sigma _2^P\]$ on the other. Inspired by the way Quantified Boolean Formulas extend SAT formulas to model problems beyond NP, we propose an extension of ASP that introduces quantifiers over stable models of programs. We name the new language ASP with Quantifiers (ASP(Q)). In the paper we identify computational properties of ASP(Q); we highlight its modeling capabilities by reporting natural encodings of several complex problems with applications in artificial intelligence and number theory; and we compare ASP(Q) with related languages. Arguably, ASP(Q) allows one to model problems in the Polynomial Hierarchy in a direct way, providing an elegant expansion of ASP beyond the class NP.  more » « less
Award ID(s):
1707371
NSF-PAR ID:
10169519
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Theory and Practice of Logic Programming
Volume:
19
Issue:
5-6
ISSN:
1471-0684
Page Range / eLocation ID:
705 to 721
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present a general approach to planning with incomplete information in Answer Set Programming (ASP). More precisely, we consider the problems of conformant and conditional planning with sensing actions and assumptions. We represent planning problems using a simple formalism where logic programs describe the transition function between states, the initial states and the goal states. For solving planning problems, we use Quantified Answer Set Programming (QASP), an extension of ASP with existential and universal quantifiers over atoms that is analogous to Quantified Boolean Formulas (QBFs). We define the language of quantified logic programs and use it to represent the solutions different variants of conformant and conditional planning. On the practical side, we present a translation-based QASP solver that converts quantified logic programs into QBFs and then executes a QBF solver, and we evaluate experimentally the approach on conformant and conditional planning benchmarks. 
    more » « less
  2. null (Ed.)
    Many program analyses need to reason about pairs of matching actions, such as call/return, lock/unlock, or set-field/get-field. The family of Dyck languages { D k }, where D k has k kinds of parenthesis pairs, can be used to model matching actions as balanced parentheses. Consequently, many program-analysis problems can be formulated as Dyck-reachability problems on edge-labeled digraphs. Interleaved Dyck-reachability (InterDyck-reachability), denoted by D k ⊙ D k -reachability, is a natural extension of Dyck-reachability that allows one to formulate program-analysis problems that involve multiple kinds of matching-action pairs. Unfortunately, the general InterDyck-reachability problem is undecidable. In this paper, we study variants of InterDyck-reachability on bidirected graphs , where for each edge ⟨ p , q ⟩ labeled by an open parenthesis ”( a ”, there is an edge ⟨ q , p ⟩ labeled by the corresponding close parenthesis ”) a ”, and vice versa . Language-reachability on a bidirected graph has proven to be useful both (1) in its own right, as a way to formalize many program-analysis problems, such as pointer analysis, and (2) as a relaxation method that uses a fast algorithm to over-approximate language-reachability on a directed graph. However, unlike its directed counterpart, the complexity of bidirected InterDyck-reachability still remains open. We establish the first decidable variant (i.e., D 1 ⊙ D 1 -reachability) of bidirected InterDyck-reachability. In D 1 ⊙ D 1 -reachability, each of the two Dyck languages is restricted to have only a single kind of parenthesis pair. In particular, we show that the bidirected D 1 ⊙ D 1 problem is in PTIME. We also show that when one extends each Dyck language to involve k different kinds of parentheses (i.e., D k ⊙ D k -reachability with k ≥ 2), the problem is NP-hard (and therefore much harder). We have implemented the polynomial-time algorithm for bidirected D 1 ⊙ D 1 -reachability. D k ⊙ D k -reachability provides a new over-approximation method for bidirected D k ⊙ D k -reachability in the sense that D k ⊙ D k -reachability can first be relaxed to bidirected D 1 ⊙ D 1 -reachability, and then the resulting bidirected D 1 ⊙ D 1 -reachability problem is solved precisely. We compare this D 1 ⊙ D 1 -reachability-based approach against another known over-approximating D k ⊙ D k -reachability algorithm. Surprisingly, we found that the over-approximation approach based on bidirected D 1 ⊙ D 1 -reachability computes more precise solutions, even though the D 1 ⊙ D 1 formalism is inherently less expressive than the D k ⊙ D k formalism. 
    more » « less
  3. null (Ed.)
    Abstract Designing agents that reason and act upon the world has always been one of the main objectives of the Artificial Intelligence community. While for planning in “simple” domains the agents can solely rely on facts about the world, in several contexts, e.g. , economy, security, justice and politics, the mere knowledge of the world could be insufficient to reach a desired goal. In these scenarios, epistemic reasoning, i.e. , reasoning about agents’ beliefs about themselves and about other agents’ beliefs, is essential to design winning strategies. This paper addresses the problem of reasoning in multi-agent epistemic settings exploiting declarative programming techniques. In particular, the paper presents an actual implementation of a multi-shot Answer Set Programming -based planner that can reason in multi-agent epistemic settings, called PLATO (e P istemic mu L ti-agent A nswer se T programming s O lver). The ASP paradigm enables a concise and elegant design of the planner, w.r.t. other imperative implementations, facilitating the development of formal verification of correctness. The paper shows how the planner, exploiting an ad-hoc epistemic state representation and the efficiency of ASP solvers, has competitive performance results on benchmarks collected from the literature. 
    more » « less
  4. Answer set programming (ASP) has long been used for modeling and solving hard search problems. Experience shows that the performance of ASP tools on different ASP encodings of the same problem may vary greatly from instance to instance and it is rarely the case that one encoding outperforms all others. We describe a system and its implementation that given a set of encodings and a training set of instances, builds performance models for the encodings, predicts the execution time of these encodings on new instances, and uses these predictions to select an encoding for solving. 
    more » « less
  5. null (Ed.)
    Consider the following two fundamental open problems in complexity theory: • Does a hard-on-average language in NP imply the existence of one-way functions? • Does a hard-on-average language in NP imply a hard-on-average problem in TFNP (i.e., the class of total NP search problem)? Our main result is that the answer to (at least) one of these questions is yes. Both one-way functions and problems in TFNP can be interpreted as promise-true distributional NP search problems—namely, distributional search problems where the sampler only samples true statements. As a direct corollary of the above result, we thus get that the existence of a hard-on-average distributional NP search problem implies a hard-on-average promise-true distributional NP search problem. In other words, It is no easier to find witnesses (a.k.a. proofs) for efficiently-sampled statements (theorems) that are guaranteed to be true. This result follows from a more general study of interactive puzzles—a generalization of average-case hardness in NP—and in particular, a novel round-collapse theorem for computationallysound protocols, analogous to Babai-Moran’s celebrated round-collapse theorem for informationtheoretically sound protocols. As another consequence of this treatment, we show that the existence of O(1)-round public-coin non-trivial arguments (i.e., argument systems that are not proofs) imply the existence of a hard-on-average problem in NP/poly. 
    more » « less