Abstract Answer Set Programming (ASP) is a logic programming paradigm featuring a purely declarative language with comparatively high modeling capabilities. Indeed, ASP can model problems in NP in a compact and elegant way. However, modeling problems beyond NP with ASP is known to be complicated, on the one hand, and limited to problems in $\[\Sigma _2^P\]$ on the other. Inspired by the way Quantified Boolean Formulas extend SAT formulas to model problems beyond NP, we propose an extension of ASP that introduces quantifiers over stable models of programs. We name the new language ASP with Quantifiers (ASP(Q)). In the paper we identify computational properties of ASP(Q); we highlight its modeling capabilities by reporting natural encodings of several complex problems with applications in artificial intelligence and number theory; and we compare ASP(Q) with related languages. Arguably, ASP(Q) allows one to model problems in the Polynomial Hierarchy in a direct way, providing an elegant expansion of ASP beyond the class NP.
more »
« less
Planning with Incomplete Information in Quantified Answer Set Programming
Abstract We present a general approach to planning with incomplete information in Answer Set Programming (ASP). More precisely, we consider the problems of conformant and conditional planning with sensing actions and assumptions. We represent planning problems using a simple formalism where logic programs describe the transition function between states, the initial states and the goal states. For solving planning problems, we use Quantified Answer Set Programming (QASP), an extension of ASP with existential and universal quantifiers over atoms that is analogous to Quantified Boolean Formulas (QBFs). We define the language of quantified logic programs and use it to represent the solutions different variants of conformant and conditional planning. On the practical side, we present a translation-based QASP solver that converts quantified logic programs into QBFs and then executes a QBF solver, and we evaluate experimentally the approach on conformant and conditional planning benchmarks.
more »
« less
- Award ID(s):
- 1914635
- NSF-PAR ID:
- 10311106
- Date Published:
- Journal Name:
- Theory and Practice of Logic Programming
- Volume:
- 21
- Issue:
- 5
- ISSN:
- 1471-0684
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Answer Set Planning refers to the use of Answer Set Programming (ASP) to compute plans , that is, solutions to planning problems, that transform a given state of the world to another state. The development of efficient and scalable answer set solvers has provided a significant boost to the development of ASP-based planning systems. This paper surveys the progress made during the last two and a half decades in the area of answer set planning, from its foundations to its use in challenging planning domains. The survey explores the advantages and disadvantages of answer set planning. It also discusses typical applications of answer set planning and presents a set of challenges for future research.more » « less
-
Conditional literals are an expressive Answer Set Programming language construct supported by the solver clingo. Their semantics are currently defined by a translation to infinitary propositional logic, however, we develop an alternative characterization with the SM operator which does not rely on grounding. This allows us to reason about the behavior of a broad class of clingo programs/encodings containing conditional literals, without referring to a particular input/instance of an encoding. We formalize the intuition that conditional literals behave as nested implications, and prove the equivalence of our semantics to those implemented by clingo.more » « less
-
Abstract Logic Programs with Ordered Disjunction (LPOD) is an extension of standard answer set programs to handle preference using the construct of ordered disjunction, and CR-Prolog 2 is an extension of standard answer set programs with consistency restoring rules and LPOD-like ordered disjunction. We present reductions of each of these languages into the standard ASP language, which gives us an alternative way to understand the extensions in terms of the standard ASP language.more » « less
-
Agostino Dovier, Andrea Formisano (Ed.)Explainable artificial intelligence (XAI) aims at addressing complex problems by coupling solutions with reasons that justify the provided answer. In the context of Answer Set Programming (ASP) the user may be interested in linking the presence or absence of an atom in an answer set to the logic rules involved in the inference of the atom. Such explanations can be given in terms of directed acyclic graphs (DAGs). This article reports on the advancements in the development of the XAI system xASP by revising the main foundational notions and by introducing new ASP encodings to compute minimal assumption sets, explanation sequences, and explanation DAGs.more » « less