skip to main content

Title: Resolving the Trilemma in Logic Encryption
Logic encryption, a method to lock a circuit from unauthorized use unless the correct key is provided, is the most important technique in hardware IP protection. However, with the discovery of the SAT attack, all traditional logic encryption algorithms are broken. New algorithms after the SAT attack are all vulnerable to structural analysis unless a provable obfuscation is applied to the locked circuit. But there is no provable logic obfuscation available, in spite of some vague resorting to logic resynthesis. In this paper, we formulate and discuss a trilemma in logic encryption among locking robustness, structural security, and encryption efficiency, showing that pre-SAT approaches achieve only structural security and encryption efficiency, and post-SAT approaches achieve only locking robustness and encryption efficiency. There is also a dilemma between query complexity and error number in locking. We first develop a theory and solution to the dilemma in locking between query complexity and error number. Then, we provide a provable obfuscation solution to the dilemma between structural security and locking robustness. We finally present and discuss some results towards the resolution of the trilemma in logic encryption.
Authors:
; ;
Award ID(s):
1651695
Publication Date:
NSF-PAR ID:
10169683
Journal Name:
International Conference on Computer-Aided Design
Page Range or eLocation-ID:
1 to 8
Sponsoring Org:
National Science Foundation
More Like this
  1. Logic locking is a promising solution against emerging hardware security threats, which entails protecting a Boolean circuit using a “keying” mechanism. The latest and hitherto unbroken logic-locking techniques are based on the “corrupt-and-correct (CAC)” principle, offering provable security against input-output query attacks. However, it remains unclear whether these techniques are susceptible to structural attacks. This paper exploits the properties of integrated circuit (IC) design tools, also termed electronic design automation (EDA) tools, to undermine the security of the CAC techniques. Our proposed attack can break all the CAC techniques, including the unbroken CACrem technique that 40+ hackers taking part in a competition for more than three months could not break. Our attack can break circuits processed with any EDA tools, which is alarming because, until now, none of the EDA tools can render a secure locking solution: logic locking cannot make use of the existing EDA tools. We also provide a security property to ensure resilience against structural attacks. The commonly-used circuits can satisfy this property but only in a few cases where they cannot even defeat brute-force; thus, questions arise on the use of these circuits as benchmarks to evaluate logic locking and other security techniques.
  2. The globalization of the IC supply chain has raised many security threats, especially when untrusted parties are involved. This has created a demand for a dependable logic obfuscation solution to combat these threats. Amongst a wide range of threats and countermeasures on logic obfuscation in the 2010s decade, the Boolean satisfiability (SAT) attack, or one of its derivatives, could break almost all state-of-the-art logic obfuscation countermeasures. However, in some cases, particularly when the logic locked circuits contain complex structures, such as big multipliers, large routing networks, or big tree structures, the logic locked circuit is hard-to-be-solved for the SAT attack. Usage of these structures for obfuscation may lead a strong defense, as many SAT solvers fail to handle such complexity. However, in this paper, we propose a neural-network-guided SAT attack (NNgSAT), in which we examine the capability and effectiveness of a message-passing neural network (MPNN) for solving these complex structures (SAT-hard instances). In NNgSAT, after being trained as a classifier to predict SAT/UNSAT on a SAT problem (NN serves as a SAT solver), the neural network is used to guide/help the actual SAT solver for finding the SAT assignment(s). By training NN on conjunctive normal forms (CNFs) corresponded to amore »dataset of logic locked circuits, as well as fine-tuning the confidence rate of the NN prediction, our experiments show that NNgSAT could solve 93.5% of the logic locked circuits containing complex structures within a reasonable time, while the existing SAT attack cannot proceed the attack flow in them.« less
  3. Due to outsource manufacturing, the semiconductor industry must deal with various hardware threats such as piracy and overproduction. To prevent illegal electronic products from functioning, the circuit can be encrypted using a protected key only known to the designer. However, an attacker can still decipher the secret key utilizing a functioning circuit bought from the market, and the encrypted layout leaked from an untrusted foundry. In this paper, after introducing essential conformity and mutuality features for secure logic encryption, we propose DLE, a novel Distributed Logic Encryption design that resists against all known oracle guided and structural attacks including the newly proposed fault-aided SAT-based attack that iteratively injects a single stuck-at fault to thwart the locking effect. DLE forces the attacker to insert multiple stuck-at faults simultaneously in critical points to achieve a smaller but meaningful encrypted circuit; thus, exponentially reducing the chance to hit all the critical points with properly located stuck-at fault injections. Our experiments confirm that DLE maintains an exponentially high degree of security under diverse attacks with the polynomial area and linear performance overheads.
  4. Logic locking has emerged as a promising solution to protect integrated circuits against piracy and tampering. However, the security provided by existing logic locking techniques is often thwarted by Boolean satisfiability (SAT)-based oracle-guided attacks. Criteria for successful SAT attacks on locked circuits include: (i) the circuit under attack is fully combinational, or (ii) the attacker has scan chain access. To address the threat posed by SAT-based attacks, we adopt the dynamically obfuscated scan chain (DOSC) architecture and illustrate its resiliency against the SAT attacks when inserted into the scan chain of an obfuscated design. We demonstrate, both mathematically and experimentally, that DOSC exponentially increases the resiliency against key extraction by SAT attack and its variants. Our results show that the mathematical estimation of attack complexity correlates to the experimental results with an accuracy of 95% or better. Along with the formal proof, we model DOSC architecture to its equivalent combinational circuit and perform SAT attack to evaluate its resiliency empirically. Our experiments demonstrate that SAT attack on DOSC-inserted benchmark circuits timeout at minimal test time overhead, and while DOSC requires less than 1% area and power overhead.
  5. Searchable Encryption (SE) has been extensively examined by both academic and industry researchers. While many academic SE schemes show provable security, they usually expose some query information (e.g., search patterns) to achieve high efficiency. However, several inference attacks have exploited such leakage, e.g., a query recovery attack can convert opaque query trapdoors to their corresponding keywords based on some prior knowledge. On the other hand, many proposed SE schemes require significant modification of existing applications, which makes them less practical, weak in usability, and difficult to deploy. In this paper, we introduce a secure and practical SE scheme with provable security strength for cloud applications, called IDCrypt, which improves the search efficiency and enhanced the security strength of SE using symmetric cryptography. We further point out the main challenges in securely searching on multiple indexes and sharing encrypted data between multiple users. To address the above issues, we propose a token-adjustment scheme to preserve the search functionality among multi-indexes, and a key sharing scheme which combines Identity-Based Encryption (IBE) and Public-Key Encryption (PKE). Our experimental results show that the overhead of IDCrypt is fairly low.