skip to main content


Title: Assessment of the Performance of Optimally Tuned Range‐Separated Hybrid Functionals for Nuclear Magnetic Shielding Calculations
Abstract

The performance of optimally tuned range‐separated hybrid (OT‐RSH) functional calculations in predicting accurate isotropic nuclear magnetic shielding (σ) and chemical shift values is examined. To that end, the results of OT‐RSH and other approximate density functional theory calculations are assessed against recently published benchmark CCSD(T) calculations for a test set consisting of several molecules and bond types. It is found that for atoms in single bonds with a large paramagnetic contribution to σ, OT‐RSH offers a significant improvement in prediction of shielding constants over popular semi‐local and hybrid density functionals, yielding non‐empirical results that are as accurate as those of semi‐empirical density functionals often used for prediction of shielding constants. This success is attributed to the improved fundamental gap prediction of the OT‐RSH approach. For atoms in multiple bonds, however, larger errors often persist. By comparing OT‐RSH and recently reported double‐hybrid functional results, the remaining difficulties are traced to significant non‐local correlation.

 
more » « less
Award ID(s):
1855470
NSF-PAR ID:
10169947
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Theory and Simulations
Volume:
3
Issue:
8
ISSN:
2513-0390
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The fundamental ideas for a non-local density functional theory—capable of reliably capturing van der Waals interactions—were already conceived in the 1990’s. In 2004, a seminal paper introduced the first practical non-local exchange-correlation functional called vdW-DF, which has become widely successful and laid the foundation for much further research. However, since then, the functional form of vdW-DF has remained unchanged. Several successful modifications paired the original functional with different (local) exchange functionals to improve performance and the successor vdW-DF2 also updated one internal parameter. Bringing together different insights from almost two decades of development and testing, we present the next-generation non-local correlation functional called vdW-DF3, in which we change the functional form while staying true to the original design philosophy. Although many popular functionals show good performance around the binding separation of van der Waals complexes, they often result in significant errors at larger separations. With vdW-DF3, we address this problem by taking advantage of a recently uncovered and largely unconstrained degree of freedom within the vdW-DF framework that can be constrained through empirical input, making our functional semi-empirical. For two different parameterizations, we benchmark vdW-DF3 against a large set of well-studied test cases and compare our results with the most popular functionals, finding good performance in general for a wide array of systems and a significant improvement in accuracy at larger separations. Finally, we discuss the achievable performance within the current vdW-DF framework, the flexibility in functional design offered by vdW-DF3, as well as possible future directions for non-local van der Waals density functional theory. 
    more » « less
  2. Modeling polaron defects is an important aspect of computational materials science, but the description of unpaired spins in density functional theory (DFT) often suffers from delocalization error. To diagnose and correct the overdelocalization of spin defects, we report an implementation of density-corrected (DC-)DFT and its analytic energy gradient. In DC-DFT, an exchange-correlation functional is evaluated using a Hartree–Fock density, thus incorporating electron correlation while avoiding self-interaction error. Results for an electron polaron in models of titania and a hole polaron in Al-doped silica demonstrate that geometry optimization with semilocal functionals drives significant structural distortion, including the elongation of several bonds, such that subsequent single-point calculations with hybrid functionals fail to afford a localized defect even in cases where geometry optimization with the hybrid functional does localize the polaron. This has significant implications for traditional workflows in computational materials science, where semilocal functionals are often used for structure relaxation. DC-DFT calculations provide a mechanism to detect situations where delocalization error is likely to affect the results. 
    more » « less
  3. Abstract

    Within density functional theory (DFT), adding a HubbardUcorrection can mitigate some of the deficiencies of local and semi-local exchange-correlation functionals, while maintaining computational efficiency. However, the accuracy of DFT+U largely depends on the chosen HubbardUvalues. We propose an approach to determining the optimalUparameters for a given material by machine learning. The Bayesian optimization (BO) algorithm is used with an objective function formulated to reproduce the band structures produced by more accurate hybrid functionals. This approach is demonstrated for transition metal oxides, europium chalcogenides, and narrow-gap semiconductors. The band structures obtained using the BOUvalues are in agreement with hybrid functional results. Additionally, comparison to the linear response (LR) approach to determining U demonstrates that the BO method is superior.

     
    more » « less
  4. Low-cost, non-empirical corrections to semi-local density functional theory are essential for accurately modeling transition-metal chemistry. Here, we demonstrate the judiciously modified density functional theory (jmDFT) approach with non-empirical U and J parameters obtained directly from frontier orbital energetics on a series of transition-metal complexes. We curate a set of nine representative Ti(III) and V(IV) d 1 transition-metal complexes and evaluate their flat-plane errors along the fractional spin and charge lines. We demonstrate that while jmDFT improves upon both DFT+U and semi-local DFT with the standard atomic orbital projectors (AOPs), it does so inefficiently. We rationalize these inefficiencies by quantifying hybridization in the relevant frontier orbitals. To overcome these limitations, we introduce a procedure for computing a molecular orbital projector (MOP) basis for use with jmDFT. We demonstrate this single set of d 1 MOPs to be suitable for nearly eliminating all energetic delocalization and static correlation errors. In all cases, MOP jmDFT outperforms AOP jmDFT, and it eliminates most flat-plane errors at non-empirical values. Unlike DFT+U or hybrid functionals, jmDFT nearly eliminates energetic delocalization and static correlation errors within a non-empirical framework. 
    more » « less
  5. We argue that the success of DFT can be understood in terms of a semiclassical expansion around a very specific limit. This limit was identified long ago by Lieb and Simon for the total electronic energy of a system. This is a universal limit of all electronic structure: atoms, molecules, and solids. For the total energy, Thomas-Fermi theory becomes relatively exact in the limit. The limit can also be studied for much simpler model systems, including non-interacting fermions in a one-dimensional well, where the WKB approximation applies for individual eigenvalues and eigenfunctions. Summation techniques lead to energies and densities that are functionals of the potential. We consider several examples in one dimension (fermions in a box, in a harmonic well, in a linear half-well, and in the Pöschl-Teller well. The effects of higher dimension are also illustrated with the three-dimensional harmonic well and the Bohr atom, non-interacting fermions in a Coulomb well. Modern density functional calculations use the Kohn-Sham scheme almost exclusively. The same semiclassical limit can be studied for the Kohn-Sham kinetic energy, for the exchange energy, and for the correlation energy. For all three, the local density approximation appears to become relatively exact in this limit. Recent work, both analytic and numerical, explores how this limit is approached, in an effort to deduce the leading corrections to the local approximation. A simple scheme, using the Euler-Maclaurin summation formula, is the result of many different attempts at this problem. In very simple cases, the correction formulas are much more accurate than standard density functionals. Several functionals are already in widespread use in both chemistry and materials that incorporate these limits, and prospects for the future are discussed. 
    more » « less