skip to main content


Title: Sample Amplification: Increasing Dataset Size even when Learning is Impossible
Given data drawn from an unknown distribution, D, to what extent is it possible to ``amplify'' this dataset and faithfully output an even larger set of samples that appear to have been drawn from D? We formalize this question as follows: an (n,m) amplification procedure takes as input n independent draws from an unknown distribution D, and outputs a set of m > n ``samples'' which must be indistinguishable from m samples drawn iid from D. We consider this sample amplification problem in two fundamental settings: the case where D is an arbitrary discrete distribution supported on k elements, and the case where D is a d-dimensional Gaussian with unknown mean, and fixed covariance matrix. Perhaps surprisingly, we show a valid amplification procedure exists for both of these settings, even in the regime where the size of the input dataset, n, is significantly less than what would be necessary to learn distribution D to non-trivial accuracy. We also show that our procedures are optimal up to constant factors. Beyond these results, we describe potential applications of sample amplification, and formalize a number of curious directions for future research.  more » « less
Award ID(s):
1704417 1813049
NSF-PAR ID:
10170134
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
International Conference on Machine Learning (ICML)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Given data drawn from an unknown distribution, D, to what extent is it possible to amplify'' this dataset and faithfully output an even larger set of samples that appear to have been drawn from D? We formalize this question as follows: an (n,m) amplification procedure takes as input n independent draws from an unknown distribution D, and outputs a set of m > n samples'' which must be indistinguishable from m samples drawn iid from D. We consider this sample amplification problem in two fundamental settings: the case where D is an arbitrary discrete distribution supported on k elements, and the case where D is a d-dimensional Gaussian with unknown mean, and fixed covariance matrix. Perhaps surprisingly, we show a valid amplification procedure exists for both of these settings, even in the regime where the size of the input dataset, n, is significantly less than what would be necessary to learn distribution D to non-trivial accuracy. We also show that our procedures are optimal up to constant factors. Beyond these results, we describe potential applications of such data amplification, and formalize a number of curious directions for future research along this vein. 
    more » « less
  2. We consider the problem of estimating how well a model class is capable of fitting a distribution of labeled data. We show that it is possible to accurately estimate this “learnability” even when given an amount of data that is too small to reliably learn any accurate model. Our first result applies to the setting where the data is drawn from a d-dimensional distribution with isotropic covariance, and the label of each datapoint is an arbitrary noisy function of the datapoint. In this setting, we show that with O(sqrt(d)) samples, one can accurately estimate the fraction of the variance of the label that can be explained via the best linear function of the data. For comparison, even if the labels are noiseless linear functions of the data, a sample size linear in the dimension, d, is required to learn any function correlated with the underlying model. Our estimation approach also applies to the setting where the data distribution has an (unknown) arbitrary covariance matrix, allowing these techniques to be applied to settings where the model class consists of a linear function applied to a nonlinear embedding of the data. In this setting we give a consistent estimator of the fraction of explainable variance that uses o(d) samples. Finally, our techniques also extend to the setting of binary classification, where we obtain analogous results under the logistic model, for estimating the classification accuracy of the best linear classifier. We demonstrate the practical viability of our approaches on synthetic and real data. This ability to estimate the explanatory value of a set of features (or dataset), even in the regime in which there is too little data to realize that explanatory value, may be relevant to the scientific and industrial settings for which data collection is expensive and there are many potentially relevant feature sets that could be collected. 
    more » « less
  3. We study the problem of testing identity against a given distribution with a focus on the high confidence regime. More precisely, given samples from an unknown distribution p over n elements, an explicitly given distribution q, and parameters 0< epsilon, delta < 1, we wish to distinguish, with probability at least 1-delta, whether the distributions are identical versus epsilon-far in total variation distance. Most prior work focused on the case that delta = Omega(1), for which the sample complexity of identity testing is known to be Theta(sqrt{n}/epsilon^2). Given such an algorithm, one can achieve arbitrarily small values of delta via black-box amplification, which multiplies the required number of samples by Theta(log(1/delta)). We show that black-box amplification is suboptimal for any delta = o(1), and give a new identity tester that achieves the optimal sample complexity. Our new upper and lower bounds show that the optimal sample complexity of identity testing is Theta((1/epsilon^2) (sqrt{n log(1/delta)} + log(1/delta))) for any n, epsilon, and delta. For the special case of uniformity testing, where the given distribution is the uniform distribution U_n over the domain, our new tester is surprisingly simple: to test whether p = U_n versus d_{TV} (p, U_n) >= epsilon, we simply threshold d_{TV}({p^}, U_n), where {p^} is the empirical probability distribution. The fact that this simple "plug-in" estimator is sample-optimal is surprising, even in the constant delta case. Indeed, it was believed that such a tester would not attain sublinear sample complexity even for constant values of epsilon and delta. An important contribution of this work lies in the analysis techniques that we introduce in this context. First, we exploit an underlying strong convexity property to bound from below the expectation gap in the completeness and soundness cases. Second, we give a new, fast method for obtaining provably correct empirical estimates of the true worst-case failure probability for a broad class of uniformity testing statistics over all possible input distributions - including all previously studied statistics for this problem. We believe that our novel analysis techniques will be useful for other distribution testing problems as well. 
    more » « less
  4. null (Ed.)
    We introduce a framework for statistical estimation that leverages knowledge of how samples are collected but makes no distributional assumptions on the data values. Specifically, we consider a population of elements [n]={1,...,n} with corresponding data values x1,...,xn. We observe the values for a "sample" set A \subset [n] and wish to estimate some statistic of the values for a "target" set B \subset [n] where B could be the entire set. Crucially, we assume that the sets A and B are drawn according to some known distribution P over pairs of subsets of [n]. A given estimation algorithm is evaluated based on its "worst-case, expected error" where the expectation is with respect to the distribution P from which the sample A and target sets B are drawn, and the worst-case is with respect to the data values x1,...,xn. Within this framework, we give an efficient algorithm for estimating the target mean that returns a weighted combination of the sample values–-where the weights are functions of the distribution P and the sample and target sets A, B--and show that the worst-case expected error achieved by this algorithm is at most a multiplicative pi/2 factor worse than the optimal of such algorithms. The algorithm and proof leverage a surprising connection to the Grothendieck problem. We also extend these results to the linear regression setting where each datapoint is not a scalar but a labeled vector (xi,yi). This framework, which makes no distributional assumptions on the data values but rather relies on knowledge of the data collection process via the distribution P, is a significant departure from the typical statistical estimation framework and introduces a uniform analysis for the many natural settings where membership in a sample may be correlated with data values, such as when individuals are recruited into a sample through their social networks as in "snowball/chain" sampling or when samples have chronological structure as in "selective prediction". 
    more » « less
  5. Summary

    Many contemporary large-scale applications involve building interpretable models linking a large set of potential covariates to a response in a non-linear fashion, such as when the response is binary. Although this modelling problem has been extensively studied, it remains unclear how to control the fraction of false discoveries effectively even in high dimensional logistic regression, not to mention general high dimensional non-linear models. To address such a practical problem, we propose a new framework of ‘model-X’ knockoffs, which reads from a different perspective the knockoff procedure that was originally designed for controlling the false discovery rate in linear models. Whereas the knockoffs procedure is constrained to homoscedastic linear models with n⩾p, the key innovation here is that model-X knockoffs provide valid inference from finite samples in settings in which the conditional distribution of the response is arbitrary and completely unknown. Furthermore, this holds no matter the number of covariates. Correct inference in such a broad setting is achieved by constructing knockoff variables probabilistically instead of geometrically. To do this, our approach requires that the covariates are random (independent and identically distributed rows) with a distribution that is known, although we provide preliminary experimental evidence that our procedure is robust to unknown or estimated distributions. To our knowledge, no other procedure solves the controlled variable selection problem in such generality but, in the restricted settings where competitors exist, we demonstrate the superior power of knockoffs through simulations. Finally, we apply our procedure to data from a case–control study of Crohn's disease in the UK, making twice as many discoveries as the original analysis of the same data.

     
    more » « less